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Abstract— We propose a methodology for dynamically bal-
ancing passive-ankled bipeds and full humanoids. As dynamic
locomotion without ankle-actuation is more difficult than with
actuated feet, our control scheme adopts an efficient whole-
body controller that combines inverse kinematics, contact-
consistent feed-forward torques, and low-level motor position
controllers. To understand real-world sensing and controller
requirements, we perform an uncertainty analysis on the linear-
inverted-pendulum (LIP)-based footstep planner. This enables
us to identify necessary hardware and control refinements
to demonstrate that our controller can achieve long-term
unsupported dynamic balancing on our series-elastic biped,
Mercury. Through simulations, we also demonstrate that our
control scheme for dynamic balancing with passive-ankles is
applicable to full humanoid robots.

I. INTRODUCTION

Dynamic biped locomotion without ankle-actuation is dif-
ficult as feedback controllers must be stable under impact
due to sudden contacts. Furthermore, accurate control of
dynamic locomotion necessitates high-bandwidth control and
state estimators. Therefore, existing dynamic locomotion
techniques have been locomotion-specific formulations. For
instance, [1] presented a method that relies and exploits the
robot’s natural dynamics, which was mechanically designed
for biped locomotion with lightweight legs and a hip located
center-of-mass. However, this procedure would not be trivial
to apply to a different robot morphology, such as a full hu-
manoid. As another approach, Hybrid zero dynamics [2] has
stability properties for periodic motions. But, this approach
is limited since additional tasks such as manipulation would
be difficult to implement.

On a related note, the generality of whole-body control
(WBC) approaches and their ability to specify multiple oper-
ational space tasks have made them a popular framework for
controlling humanoid robots [3]–[7] with promising disaster
response-related applications [8]–[11]. However, while there
exist WBC-based dynamic locomotion techniques for bipeds
with actuated ankles, such as the use of capture-point in var-
ious humanoids [4], [12], [13], there is no established WBC-
based dynamic locomotion technique for passive-ankled
bipeds due to additional practical implementation challenges.
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For instance, typical utilization of WBC requires a low-
level torque feedback controller. However, having torque
feedback poses some problems: (a) there exists stability and
bandwidth trade-offs for cascaded WBC structures with high-
level position control and low-level torque control [14], (b)
torque feedback control performance is susceptible to time
delays [15], and (c) passivity such as damping is reduced
which decreases stability as torque control fundamentally
removes Coloumb friction.

To address the desire of dynamic locomotion of passive-
ankled bipeds with a generic controller, this paper presents
a WBC-based control methodology utilizing inverse kine-
matics to resolve desired configurations from operational
space tasks, a WBC-based quadratic program (QP) to extract
contact-consistent torques as feed-forward, and a low-level
joint position controller based on motor-position feedback
signals with feed-forward currents for configuration control.
Unlike typical implementations of WBC, this formulation
achieves high-bandwidth position control and bypasses the
problems incurred with a torque feedback loop by instead
feed-forwarding currents from torques computed by our QP
to the low-level joint-position controller. For a hardware
demonstration of the algorithm, we identified additional sens-
ing and control requirements by analyzing the uncertainty of
our LIP-based velocity-reversal planner [14]. This determines
the required accuracy of the center-of-mass (CoM) state
estimation and the foot landing location subject to the robot’s
kinematic limits. Based on this analysis, we implement
necessary sensing and control changes. Algorithmically, we
verify that our approach is applicable to other humanoid
robots in simulation where we have also imposed that the
humanoids’ ankles only have passive damping.

With our WBC-based methodology and uncertainty analy-
sis, we achieve long-term unsupported dynamic balancing of
our series-elastic and passive-ankled biped robot, Mercury.
We emphasize that existing WBC-based biped dynamic
locomotion rely on actuated feet and are not as dynamically
challenging as ours. The contributions of our paper are as
follows: (1) we devised and implemented a control scheme
for dynamic balancing of passive-ankled bipeds, (2) we
present an uncertainty analysis on the planner to identify
sensing and control requirements, and (3) we experimentally
validate our methods with our passive-ankled biped robot.

II. ROBOT SYSTEM DESCRIPTION

A. Mercury Hardware and Usage Details

Mercury is the new name of our previous robot, Hume
[14], with significant hardware upgrades (see Fig. 1). Joint
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Fig. 1. System description of Mercury. Carbon fiber cases were installed on Mercury’s thighs to increase structural stiffness. Spring-loaded passive-ankles
with limit switches were also added to limit the uncontrollable yaw rotation and detect ground contacts. The IMU was upgraded to Sensonor’s STIM-300,
which has less angular velocity drift and bias, enabling accurate orientation estimates even with simple forward integration. Mercury’s actuators are Meka
SEAs with each having three sensors to measure joint position, spring deflection, and motor position. An absolute position encoder is used to measure the
joint position, q, while a low-noise quadrature encoder measures motor position, θ. All of the embedded electronics were replaced with Apptronik’s Medulla
and Axon board system that comes with a variety of low-level controllers for SEAs. The robot’s control PC is an off-the-shelf mobile PC (ZBOX-MI549)
with RT preempt on Ubuntu 16.04 LTS to enable real-time control.

position sensing can be done either with the absolute en-
coder or through a transmission ratio with the motor’s low-
noise quadrature encoder. Our implementation uses the latter.
When ground contact is unexpectedly detected by the limit
switches on the spring-loaded passive ankles, Mercury’s
swing phase is terminated earlier than the specified swing
duration to remove the jerk that would have been apparent
from continuing to follow the designated swing leg trajectory.

B. Challenges in the Locomotion Control of Mercury

To highlight the locomotion challenge presented by Mer-
cury, it is necessary to discuss the mass distribution of
Mercury against other bipeds (Fig. 2)1. Mercury’s mass
distribution is similar to typical humanoid robots such as
Valkyrie [16] or Atlas [7]. These robots have (1) a torso
CoM location above the hip joint (around the length of half
the body), and (2) the ratio between the total leg mass to the
torso mass is not negligible (eg: greater than 0.4). On the
other hand, ATRIAS [1] has a mass distribution optimized
to be a mechanical realization of the inverted pendulum
model, which aids with the implementation of locomotion
controllers. Unlike typical humanoids, ATRIAS’s torso CoM
location is close to the hip joint and the ratio between the
total leg mass to the torso is negligible (less than 0.1) .

While Mercury and ATRIAS are similar in their lack of
ankle actuation and number of degrees-of-freedom, the dif-
ference in mass distributions have prominent consequences
on the locomotion control difficulty. Since ATRIAS has its
torso CoM close to the hip joint axis, the link inertia reflected

1The robots’ inertia information is available as open source.
Valkyrie: https://github.com/openhumanoids, ATLAS:
https://github.com/dartsim/, ATRIAS: https://github.
com/sir-avinash/atrias-matlab

to the hip joint is small, which reduces the difficulty of
controlling the body’s orientation. In contrast, the CoM of
Mercury and the other humanoids are located at half-a-body
length above the hip joint, which creates a larger moment
arm and increases the difficulty of body orientation control.

Next, since ATRIAS has negligible leg mass compared
to its body, the body perturbations due to the swing leg
are also negligible. However, Mercury, having significant
leg mass causes noticeable body perturbations during the
swing phase. Thus, it becomes necessary for Mercury to
have a whole-body controller which can compensate against
Coriolis and gravitational forces introduced by the swing
leg to maintain a desired body configuration, follow inverted
pendulum dynamics, and control the swing foot to a desired
landing location. Overall, in addition to Mercury’s SEAs and
lack of ankle actuation, its mass distribution make it a more
difficult robot to control.

III. CONTROL SCHEME

The controller is a cascaded structure with three feedback
loops: a kinematics controller, our whole-body controller,
and a low-level joint controller with current feed-forward.
For the following controller discussion, let q, q̇ ∈ Rn be the
robot’s current generalized position and velocity respectively
with n degrees of freedom which includes the m actuated
joints (qact), and noting that the first six elements of q are
the floating base configuration.

A. Kinematics Controller

The kinematics control block computes the desired config-
uration, velocity, and acceleration terms, which are inputs to
the whole body dynamic controller and low-level controllers
(Fig. 3). A high level planner provides a desired Cartesian
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Fig. 2. Mass distribution properties of some biped robots. The center-
of-mass locations are superimposed on the upper-body and leg links of each
robot. The bar graph depicts the ratio of the total leg mass over the upper
body mass. Notice that ATRIAS has a mass distribution property unlike
typical humanoids by having a torso mass near the hip joint and a small
leg-to-upper-body mass ratio.

posture, xd =
[
xd
b , xd

f

]>
, where xd

b =
[
hd, Qd

b

]> ∈
R5 is the desired base height, hd, and orientation, Qd

b

(denoted as a unit quaternion), while xd
f ∈ R3 is the desired

cartesian space foot position. To satisfy the desired Cartesian
posture, the stance and swing leg configurations, qst and qsw
respectively, are computed separately.

For controlling the base height and orientation, the Ja-
cobian of the robot’s base, Jb ∈ R3×n is constructed
with rows corresponding to the base height, roll, and pitch
dimensions. For Mercury, the yaw orientation is assumed to
be uncontrollable but fixed due to its passive foot. Thus,
the base Jacobian is constructed without the yaw dimension.
The configuration change needed to track the desired base
configuration is defined as a single-step inverse kinematics
(IK) with

∆qst = (JbN c)
†∆xst, (1)

where ∆xst ∈ R3 is the operational space error for the base
height and orientation, N c = (I−J†cJc) is the null space of
the contact Jacobian, Jc, and † is the pseudo-inverse operator.
During the single support phase, the contact Jacobian is Jc =
Ji ∈ R3×n, with i ∈ {l, r} indicating either the left or right
foot, while in double support it is Jc =

[
J>l , J>r

]> ∈
R6×n.

Let h ∈ R be the current base height, and Sori ∈
B2×3 be a binary matrix which selects only the roll and
pitch components of the axis-angle representation of the
orientation error, we. Then, ∆xst is defined as

∆xst =
[
(hd − h), Soriwe

]> ∈ R3. (2)

Thus, the desired base configuration can be tracked by setting
the desired configurations to be

qst = q +
[
01×6, (Sact∆qst)

>]> , (3)

where Sact ∈ Bm×n is a binary matrix extracting only the
components of ∆qst related to actuated joints.

During single support, one of the legs will be in the swing
phase. There are many ways to specify the joint trajectory
of the swing foot, but what was used for the experiment is
described as follows. In the beginning of the swing phase, the
high-level planner provides a desired foot retracting location.
The x − y components of the retracting location are set to

be the midpoint between the current swing foot location and
a default landing location, which is a fixed offset from the
stance foot frame. The z-component is set to a default swing
height. Then, at the mid-point of the swing trajectory, the
planner provides a desired landing location. For either case,
an IK is performed on the swing foot while assuming that
the robot’s base orientation is aligned vertically. This is ef-
fectively a simple fixed-manipulator IK with the assumption
that the support leg is tracking the desired base configuration.
The final swing leg joint position can be obtained, and
a sinusoidal spline trajectory is constructed using initial,
mid, and final joint positions to define boundary conditions.
When the high-level planner provides a new desired foot
landing location, a new joint trajectory is reconstructed with
corresponding boundary conditions for smoothness.

Finally, the computed desired configuration and its two
time-derivatives depend on the contact configuration of the
robot. Namely,

qd =

{
qst if double support
[01×6, (Sstqst + Sswqsw)>]> else

(4)

where qsw is the swing leg trajectory, Sst ∈ Bm×n and
Ssw ∈ Bm×n are binary matrices that only select the stance
and swing joint components respectively with the property
that an element extracted by Sst is set to zero by Ssw
and vice-versa. Then, the desired configuration, velocity, and
acceleration are inputs to the whole-body dynamic controller
(WBDC) which compute torque command.

B. Whole-Body Dynamic Controller (WBDC)

A simple version of the whole-body dynamic controller
(WBDC) proposed in [5] is used here in which the oper-
ational space tasks are simply single joint position control
tasks. A necessary condition of WBDC is that the contact
constraints and the first task must span the floating base dy-
namics to make the reaction forces computationally (Eq. (5))
feasible. Thus, the joint position control task must include
the floating base configurations in the task definition. The
purpose of including the floating base is simply to solve
the optimization problem rather than actually controlling the
base. Therefore, we use small weights in the cost matrix of
the QP’s objective function for the floating base configura-
tions.

Given a desired configuration, velocity, acceleration,
WBDC finds the instantaneous feed forward joint torque
values needed to cancel the robot dynamics subject to
unilateral contact constraints. Given the current state, WBDC
solves the following QP:

min
Fr,ρ

F>rWFr + ρ>Rρ (5)

s.t. Sf (Aq̈ + b + g − J>c Fr) = 06×1 (6)

UFr ≥ 0 (7)

q̈cmd = q̈d +KD(q̇d − q̇) +KP (qd − q), (8)

q̈ = −JcJ̇cq̇ +N c

(
(q̈cmd + ρ) + JcJ̇cq̇

)
, (9)
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Fig. 3. Diagram of the Control Methodology. Our controller has a cascaded structure with three feedback loops. bl and br are left and right foot contact
signals. xLED is the position of MoCap LED sensors. (1) The kinematics controller computes joint trajectories based on desired operational space tasks.
(2) The whole-body controller computes contact-consistent torque commands to cancel robot dynamics subject to unilateral constraints. (3) Low-level PD
controllers on the motor positions with feed-forward currents from the computed torques are used to achieve the desired joint configurations. The footstep
planner plans a single desired foot landing location per step at the midpoint of the swing leg trajectory. Note that qm are joint positions computed from
the motor positions via a transmission ratio.

where Fr is the contact reaction forces for a corresponding
contact Jacobian, Jc, W and R are cost matrices, ρ is a
task command relaxation term, A is the inertia matrix with
additional motor rotor inertia terms on the diagonal corre-
sponding to the actuated joints, b and g are the Coriolis and
gravitational forces, U describes the unilateral constraints
with a polyhedral approximation of the friction cone, (·)
is the dynamically-consistent pseudo inverse of (·), defined
as X = A−1X>(XA−1X>)−1. Nc (= I − JcJc) is a
dynamically consistent null-space projection. Sf is a binary
matrix extracting only the floating base dynamics. Eq.(9)
enforces consistency with the contact constraints. Then the
torque command can be extracted via[

06×1
τ cmd

]
= Aq̈ + b + g − J>c Fr, (10)

where τ cmd is the joint torque vector used as feed-forward
input to the low-level controller by converting it to currents
using motor-torque constants. During contact transitions be-
tween single and double support phases, the bounds of the
reaction forces are smoothly changed to avoid QP solution
discontinuities. Refer to our previous work [5] for details
about smooth contact transitions and cost weights.

C. Low-Level Controller: PD with Current Feed-Forward

Each actuated joint has a low-level controller which takes
as input the previous feed-forward torque, τ cmd, and a
desired joint position and velocity (qact, q̇act). The input
torque is converted as a feed-forward current to the motor.
A PD controller is used to track the desired joint position
and velocity using the motor position and velocity data as
feedback signals. We compute the joint positions from motor
positions using the transmission ratio, N . Currently, the
spring deflection is ignored when calculating joint positions
from motor positions. While it is also possible to use the
joint’s absolute position encoders as the feedback signals,

our empirical tests show that we obtain better joint velocity
tracking when using motor position and velocity as feedback
signals. The feed-forward currents also increase the joint
position and velocity tracking performance.

D. Application of the Generic Algorithm on Multiple Robots

The proposed methodology is generic and applicable to
many types of biped robots. To demonstrate, we verify
walking with Mercury, Valkyrie, and Atlas in a physics-
based simulation (Fig. 4). For Valkyrie and Atlas, we also
include the pelvis and torso orientations as part of Jb. The
proposed algorithm and simulation results are published as
open-source2.

IV. UNCERTAINTY ANALYSIS OF THE PLANNER

Fundamentally, our locomotion planner observes the CoM
position and velocity states, x = [x, ẋ]> ∈ R2 and computes
a foot landing location p ∈ R. The planner implemented in
Mercury is the same one as the one presented in [14]. Here,
we enforce a linear height surface constraint to simplify the
implementation and analysis, but the formulation can address
any type of smooth surfaces. The use of the linear inverted
pendulum (LIP) model simplifies the planner formulation
and enables the uncertainty analysis of noisy CoM state
observations and landing location errors under kinematic
constraints.

A. Formulation of Planner

The planner is formulated based on the LIP model:

ẍ =
g

h
(x− p), (11)

where g and h are the gravity and constant CoM height,
respectively. Regarding p as the input for the LIP dynamics,
the robot is stabilized by reversing the CoM direction after
every step. Concretely, the planner aims to reverse the CoM

2https://github.com/dhkim0821/Humanoid_2018
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Mercury Valkyrie Atlas

Fig. 4. Walking simulation of three robots. Our control methodology
enables locomotion of three different biped humanoids, Mercury, Valkyrie,
and Atlas. For Valkyrie and Atlas, underactuation of the ankles are simulated
by adding only damping to the joint.

velocity after a pre-defined duration t′ has elapsed by finding
a new stance foot location p. Notice that Eq. (11) is linear
so it has an exact solution for the CoM state, x(t). Thus, for
a given p, the CoM state after time T can be described as a
discrete system with

xk+1 = Axk +Bpk, (12)

A =

[
cosh(ωT ) ω−1 sinh(ωT )
ω sinh(ωT ) cosh(ωT )

]
, (13)

B =

[
1− cosh(ωT )
−ω sinh(ωT )

]
, (14)

where k indicates the k-th locomotion step and ω =
√
g/h.

Since the goal is to select a pk which reverses the CoM
velocity, let the velocity component (bottom row) of Eq. (12)
be zero after time, t′, resulting into

0 =
[
ω sinh(ωt′) cosh(ωt′)

]
xk − ω sinh(ωt′)pk. (15)

Observe that solving for pk in Eq. (15) will give a stance foot
location that will cause the CoM velocity to be zero after a
duration of t′ and negative immediately after. With the CoM
velocity being reversed after every step, an additional bias
term, κ, is added to move the robot toward the origin. Further
details about κ are presented in [14]. As a result, the landing
location, pk is defined by

pk =
[
1 ω−1 coth(ωt′)

]
xk +

[
κ 0

]
xk. (16)

This results into equivalent discrete step dynamics,

xk+1 = (A+BK)xk, (17)

K =
[
(1 + κ) ω−1 coth(ωt′),

]
(18)

Notice that the planner ends up with a PD control form;
therefore, by applying the stability criteria of PD controllers,
the planner parameters, (κ, t′), can be tuned by setting
magnitudes of eigenvalues of A + BK smaller than 1.
In our case, we use an eigenvalues with magnitude 0.8.
Since the desired behavior is to take multiple small steps
toward the origin rather than a single big step, the eigenvalue
magnitudes are intentionally set to be close to one rather
than zero. The desired motion is visualized as a converging
oscillatory trajectory in a phase plot, Fig. 5(a).
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Fig. 5. Phase plot and uncertainty analysis of the LIP-based planner.
In (a), the phase trajectories of 8 steps from three initial states converging
toward the origin are shown. In (b), the region of uncertainty is encircled
by balls. States within the blue region and outside of the ball radius are
kinematically feasible and asymptotically stable respectively. The ball radius
increases when the system has large errors in state observation and control
input.

B. Uncertainty Analysis

During walking tests, we observed notable body position
and landing location errors due to the deflection of the
mechanical structures. To quantify the acceptable error for
the planner, we analyze the stable region of states given error
magnitudes by borrowing ideas from robust control [17]. We
limit the scope of analysis on the LIP dynamics and the
planner with the following assumptions:

1) The step size limit is set to 0.4 m by approximating
the robot’s kinematic limits.

2) State-dependent errors are ignored.
Since large errors in our tests comes from the undetected
mechanical deflections, there is no direct mapping between
these errors and the state. However, we are able to reason
about the errors due to the state observation and control
inputs. Based on this assumption, the discrete step dynamics
are rewritten with terms representing the uncertainty,

xk+1 = Axk +B(pk + η),

pk = K(xk + δ),
(19)

where η and δ represent the landing location error and the
observation error respectively. Furthermore, the errors are
assumed to be bounded by their maximum values:

||δ|| ≤ δM , ||η|| ≤ ηM . (20)

Since the velocity of the state changes sign after every
step, typical convergence analysis regards this as an unstable
oscillatory behavior despite the fact that the absolute value of
x decreases as we require. To enable convergence analysis,
we analyze the dynamics after two steps instead of a single
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step (Eq. (19)). Therefore, from an initial state, x, after two
steps, the new state, x′′, is defined as

x′′ = A2x +AB(p+ η) +B(p′ + η′),

p = K (x + δ) ,

p′ = K (x′ + δ′) ,

(21)

where (), ()′, and ()′′ represent the kth, (k+1)th and (k+2)th
step respectively. The main idea is to find the region in x in
which the Lyapunov function still decreases after two steps
subject to the maximum errors, δM and ηM :

∆V = x′′>Px′′ − x>Px ≤ 0. (22)

Substituting Eq. (21) and arranging the terms, and observing
that ∆V has an upper bound,

∆V = x>(A>ccPAcc − P )x + 2ζ>PAccx + ζ>Pζ

≤ −a||x||2 + 2b||x||+ c (23)
≤ 0,

where,

Ac = A−BK (24)

Acc = A2
c (25)

ζ = AcBKδ +BKδ′ +AcBη +Bη′ (26)

a = −λM
(
A>ccPAcc − P

)
, (27)

b = δM
(
||A>ccPAcBK||+ ||A>ccPBK||

)
+

ηM
(
||A>ccPAcB||+ ||A>ccPB||

)
, (28)

c = g(ζ>Pζ) (29)

||.|| is the l2-norm, λM (.) denotes the maximum eigenvalue
of the matrix, and g(ζ>Pζ) is the sum of the l2-norm of
every term in ζ>Pζ similar to b. Note that a is positive if
the planner parameters are tuned so that the LIP is stable.
Now, we can define a ball region based on Eq. (23):

Br =

{
x

∣∣∣∣∣||x|| ≤ b+
√
b2 + ac

a

}
. (30)

Then, x 6∈ Br are asymptotically stable states as ∆V will
be negative. Note that a smaller ball means a bigger stability
region, and if the errors are zero, the ball will have a 0 radius
and any state will be asymptotically stable.

By substituting the planner’s parameters from Table I into
Eq. (30), we obtain information about the magnitude of
allowable errors. Fig. 5(b) shows the feasible state region
given the step size limit, and the uncertainty regions with
two different error setups. The orange circle indicates the
uncertain region of the state when the observation error is
0.03m, and the foot landing location error is 0.045m. These
errors are close to what we have observed in our walking
tests before we included the motion capture (MoCap) data in
our state-estimator and the body orientation based swing leg
trajectory adjustment (see Section V-C). After making these
additional implementation improvements, the blue circle
indicates a 2mm state observation error, which coincides
with the accuracy of the MoCap system, and a reduced foot
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Fig. 6. Comparison between the computed Base and CoM state and the
MoCap data from a sample walking test. x, y, z correspond to forward,
lateral and vertical directions. The black vertical lines indicate phase changes
during walking, ie: double to single support. In (a), the computed CoM and
base positions from kinematics and the sensed position from the MoCap
data are plotted. The difference between the computed CoM and base
positions is negligible. However, the difference between the computed and
actual positions differ especially in the lateral direction, which can have
errors of over 5cm. (b) The base velocity computed from kinematics shows
serious fluctuation compared to its true velocity. Note that computations
from kinematics utilize on-board sensing data from the IMU and encoders.

landing location error of 0.015m. As shown in Fig. 5(b),
this uncertain region with higher accuracy (blue circle) is
embedded within the feasible state set (blue area), implying
that the planner can dynamically stabilize the robot from
many starting states.

V. IMPLEMENTATION DETAILS

The additional implementation details are aimed at low-
ering the body’s state estimation and the foot’s landing
location errors to satisfy sensing and control requirements
from Section IV-B.

A. Using the Base state instead of the CoM state

As the true CoM state is subject to errors from the model
and disturbances from the swing leg motion, our current
implementation instead uses the base position (Fig. 1(b)), and
assumes that the CoM of the robot is always at this location.
As seen in Fig. 6(a), the difference between the CoM and
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Fig. 7. Experimental results from two dynamic balancing test cases. Using the same controller and planner parameters, we test two scenarios: case
1 in which the robot does not use the MoCap and the additional swing leg adjustment described in Section V, and case 2 in which they are used. (a) The
lateral-direction phase path of four steps from case 1 shows that state velocities go over 0.5m/s, which is five times larger than case 2, and foot landing
locations typically greater than 0.045m. (b) An example phase path of four steps from a 50 step run using MoCap-based estimation and swing leg trajectory
adjustments described in Section V-C. The velocity state is bounded within 0.1m/s with foot landing locations typically less than 0.015m (c) The lateral
direction error between the estimated kinematics body position and the MoCap data are presented for both cases. Notice that the observation errors from
kinematic computations go over 0.05m, which is unacceptable according to our uncertainty analysis (Section IV-B). Thus, we need to utilize the MoCap
data to demonstrate the controller with our hardware. (d) A time-series plot of the base position, which demonstrates that our control methodology achieves
prolonged unsupported dynamic balancing.

base positions are small. This enables us to (1) decouple the
computation of the CoM state from the swing leg motion, and
(2) perform a straight-forward sensor-fusion process with a
Kalman filter by combining the sensed body positions from
joint-encoders and the overhead MoCap system.

B. Base State Estimation With Motion Capture System

Fig. 6(a) compares the base positions between MoCap
measurements and kinematics-based computations. The es-
timated positions are notably different in the lateral direc-
tional which can have errors over 0.05m. From the analysis
presented in Section. IV-B, this error is not acceptable.
Additionally, the base velocity estimation from kinematics
fluctuates in all phases of walking when compared to the
MoCap velocity estimation (Fig. 6(b)). To reduce base state
estimation errors, the MoCap data is included in the state
estimator. Since the LEDs of the MoCap is susceptible to
self-occlusion, we also perform sensor-fusion between the
computed base states from kinematics and the MoCap data
with traditional Kalman-Filtering techniques.

C. Swing Leg Trajectory Adjustment

Since the swing leg uses a joint position trajectory rather
than a cartesian space trajectory, the foot landing location
will depend on the torso orientation. To compensate, the
desired joint position of the abduction and hip joints are
adjusted based on the torso orientation. Thus, after a desired
landing location is determined by the planner at half swing-
time, the new swing leg joint position command is set to

qdabd = sabd(t) +Kφφ,

qdhip = ship(t) +Kψψ,
(31)

where s(.) is the planned joint trajectory, and φ and ψ are
the error roll and pitch angles of the body, respectively. This
simple adjustment reduces our nominal landing location error
from 0.045m to 0.015m.

VI. EXPERIMENTAL RESULTS

We present experimental results to demonstrate our control
algorithm on the Mercury biped with passive-ankles. We also
compare two trials to verify the accuracy requirements of
our uncertainty analysis. To begin the experiment, Mercury
is briefly supported by the experimenter while it pushes itself
to a desired height. Once it reaches its starting height, the
experimenter lets go as it takes its first step. The walking
behavior is a time-scripted state machine, ie: double support
phase → contact transition phase → single support and leg
swing phase→ double support phase. While state transitions
occur after a predefined time duration, the swing phase is
terminated earlier if contact occurs before the swing time is
over. Temporal and planner parameters are listed in Table. I,
which correspond to a walking rate of 2.7 steps per second.

Fig. 7 shows a summary of the experimental results.
The plots only focus on the lateral directional movement
as stabilizing this direction is more difficult for Mercury
due to a small feasible step size and larger observed errors
between the kinematic estimate and the MoCap data as
seen in Fig. 6(a). The step size is limited by the abduction
joints’ small range of motion and the kinematic constraint
preventing Mercury from crossing its legs.

In test case 1, the MoCap data and the swing leg adjust-
ment as described in Section V are not used. The resulting
walking behavior has high lateral velocities, landing location
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Double stance Transition Swing t′ κ

0.01 sec 0.03 sec 0.33 sec [0.18, 0.18] [0.12, 0.09]

TABLE I
PLANNER PARAMETERS

errors anywhere from 0.01m to 0.05m (Fig 7 (a)), and state
estimation errors of up to 0.1m (top plot of Fig 7 (c)). As
predicted by our uncertainty analysis, the state estimation
and foot landing location errors are too large, and Mercury
fails to dynamically balance after only six steps.

In contrast, test case 2 performs sensor fusion with the Mo-
Cap data and adjusts the swing leg to address the sensing and
control requirements of our uncertainty analysis (Section. IV-
B). Fig. 7(b) shows that lateral velocities are bounded within
0.1m/s, and foot landing location errors that are nominally
less than 0.015m. While the state estimation errors between
kinematic computations and the MoCap data are still high
(bottom plot of Fig 7 (c)), test case 2 uses the MoCap data
for state estimation which brings the state estimation error
down to the MoCap’s sensing error of 2mm. With a state
observation error of 2mm and nominal foot landing locations
of 0.015m, our uncertainty analysis predicts a stable walking
behavior. As a result, we achieve the challenging unsupported
extended dynamic balancing behavior (Fig. 7(d)) that our
methodology had targeted. 3

VII. CONCLUSIONS AND DISCUSSIONS

We demonstrate extended dynamic balancing of a biped
humanoid with no-ankle actuation using a novel locomotion-
control scheme. The algorithmic generality has also been ver-
ified with walking simulations of three biped humanoids. We
performed an uncertainty analysis of our footstep planner and
found maximum allowable errors for our state estimator and
controllers, which enabled us to address additional sensing
and control requirements. By integrating a high-performance
whole-body feedback controller, a robust locomotion planner,
and a reliable state estimator, our passive-ankled biped robot
accomplishes extended unsupported dynamic balancing.

In devising our control scheme, we have experimented
with a variety of whole-body control formulations and feed-
back controllers. We compared different WBC operational
task specifications such as foot position vs leg joint posi-
tion control, base vs CoM position control, having vs not
having task priorities, etc. In the low-level controller we
also experimented with torque feedback with disturbance
observers, joint vs motor position feedback, and joint po-
sition control with and without feed-forward torques. The
methodology presented here is our best performing controller
after a system-level integration. Our next paper will perform
additional analysis and experiments at length to characterize
more properties of the controller.
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