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Abstract— Legged robots have been highlighted as promising
mobile platforms for disaster response and rescue scenar-
ios because of their rough terrain locomotion capability. In
cluttered environments, small robots are desirable as they
can maneuver through small gaps, narrow paths, or tunnels.
However small robots have their own set of difficulties such as
limited space for sensors, limited obstacle clearance, and scaled-
down walking speed. In this paper, we extensively address
these difficulties via effective sensor integration and exploitation
of dynamic locomotion and jumping. We integrate two Intel
RealSense sensors into the MIT Mini-Cheetah, a 0.3 m tall, 9 kg
quadruped robot. Simple and effective filtering and evaluation
algorithms are used for foothold adjustment and obstacle
avoidance. We showcase the exploration of highly irregular
terrain using dynamic trotting and jumping with the small-
scale, fully sensorized Mini-Cheetah quadruped robot.

I. INTRODUCTION

Legged robots are well suited for rough terrain locomotion
due to the fact that limb utilization provides much larger
coverage over irregular terrain than wheeled or tracked
mobile platforms. This has motivated research on disaster
response using legged systems [1]–[3]. Quadruped robots
in particular have been highlighted as promising candidates
for locomotion over challenging terrain [4]–[7] and robust,
dynamic locomotion has been demonstrated on various sys-
tems. Existing quadrupeds share a common factor in that
they are large enough to clear normal obstacles such as
stairs or curbs. However, smaller robots are desirable for the
exploration of spaces with narrow regions such as tunnels,
damaged buildings, ships, or submarines. However, except
for a few studies using the Boston Dynamics LittleDog robot
[8]–[10], there is no active research on small-scale quadruped
robots. Furthermore, quadruped robots with fully integrated
perception capabilities are particularly rare.

Small robots have several fundamental limitations which
demotivate their study. First of all, small robots do not have
enough space to integrate comprehensive sensor suites. As
such, the Mini-Cheetah also does not provide significant
space for additional sensors. Therefore, instead of a large
lidar sensor, we elected to use two small Intel RealSense
cameras, the T265 and D435 for localization and depth
perception respectively.

Installing a depth camera presented a unique challenge
because the head and tail of the robot are where the hip
and knee joint actuators connect to the abduction actuator.
Therefore, the Mini-Cheetah has no stationary parts at its
head to which we could attach a depth camera. We resolved
this issue by making an attachment with two pivots designed
to align with the abduction joint axes. We connected the

Fig. 1. Mini-Cheetah integrated with vision sensors. Mini-Cheetah is a
small-size quadruped robot fully functioning with vision system.

attachment to the hip joint actuators which move as the
abduction joints rotate, however the sensor remains stationary
throughout the abduction because the pivot points are aligned
with the rotation axes (see Fig. 2).

The space limitation effects not only sensor placement but
also computation power by limiting computer and battery
size. Running the perception processes in parallel with real-
time feedback control is challenging given the lowered com-
putational capacity. Therefore, we utilize simple and efficient
algorithms for obstacle avoidance and vision data processing.
For obstacle avoidance, we utilize a potential field algorithm,
which makes virtual potential fields which generate virtual
repulsive forces when the terrain height is over a threshold.
The virtual forces are summed with the commanded path
vector to compute the final velocity command. As a result,
the robot can smoothly avoid obstacles without need for
explicit low level path planning or prior knowledge of the
terrain. For heightmap construction and filtering, we use
an opening morphological transformation implemented using
OpenCV. Gradient-based heightmap evaluation is used to
avoid stepping on edges in the terrain. By optimization of the
software implementation with efficient memory handling and
data down-sampling, we succeeded in running all processes
including locomotion control on a small Intel UP board com-
puter in the Mini-Cheetah. We could not use the standalone
setup in live experiments because of cable clearance issues
with the UP board USB 3.0 port.

In addition to the technical challenges, small robots
have limited capability in locomotion speed and obstacle-
clearance caused by their short limb length. However, these
limitations can be overcome by exploiting faster, more dy-
namic gaits and by jumping over obstacles. In this paper, we
demonstrate rapid exploration over highly irregular terrain
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Fig. 2. System description and coordinate system. (a) The Mini-Cheetah robot is fully sensorized with two Intel RealSense sensors. (b) The coordinate
systems are described. Each sensor signal is eventually transformed into the world reference frame to build a global heightmap.

using a trotting gait. Unlike other locomotion methods that
are limited by the speed restrictions imposed by vision
integration [11]–[13], our method aims to maintain dynamic
locomotion capability. In addition, we also demonstrate
jumping over large terrain discontinuities to further improve
terrain coverage.

In summary, the major contributions of this paper are
twofold: 1) systematic integration of vision sensors, per-
ception algorithms, obstacle avoidance, locomotion control,
and jump motion optimization to accomplish dynamic ex-
ploration with a small-scale quadruped robot, and 2) exper-
imental validation using the sensorized Mini-Cheetah robot.
We accomplished 0.38 m/s (or 1 body length per second)
locomotion over the highly irregular terrain.

II. SYSTEM OVERVIEW

The platform used in this study is the MIT Mini-Cheetah
[14]. The Mini-Cheetah is a 9 kg, 0.3 meter tall electrically
actuated small-scale quadruped robot. The upper and lower
leg links are 0.21 meters and 0.21 meters respectively and
there are 0.38 meters between the front and hind legs as
shown in Fig. 2(a). The robot stands with 25 cm ground
clearance which is comparable to the height of a stair or
street curb. This low clearance limits the height of obstacles
that the robot can overcome under normal walking condi-
tions.

Locomotion is executed on an Intel UP board low-power
single board computer with a quad-core Intel Atom CPU, 4
GB RAM and a 1.92 GHz, running Linux with the CONFIG-
PREEMPT-RT patch for pseudo-realtime operation. The UP
board is the size of a credit card and has computational power
comparable to that of a tablet computer.

A. Intel RealSense

Visual data is gathered using two Intel RealSense cameras,
the D435 and T265. The D435 provides depth images used
to construct a map of the area surrounding the robot while
the T265 serves for localization.

The RealSense D435 is 90 mm×25 mm×25 mm, has a
mass of 71.8 g, and an 87◦×58◦×95◦ field of view (FOV).
The sensor publishes 640 × 480 depth images at a rate of
90 Hz in a pointcloud format. The D435 has an accuracy of
less than 1% error per meter distance from the sensor with
a minimum distance of 10 cm. For our application where
most of the sensor returns are less than a meter away, the
expected accuracy is between 2.5 mm and 5 mm.

The Realsense T265 is 108 mm×24.5 mm×12.5 mm, has
a mass of 55 g, and has two fisheye lenses with a combined
163 ± 5◦ field of view (FOV). The sensor has an onboard
inertial measurement unit (IMU) which allows for more
accurate rotation and acceleration measurements. Finally, the
RealSense T265 has an integrated Intel Movidius Myriad
2.0 Visual Processing Unit (VPU) which is highly optimized
to run visual-inertial simultaneous localization and mapping
(SLAM). The T265 publishes a pose estimate produced by
the visual-inertial SLAM algorithm at a rate of 200 Hz
which was used by the robot for localizing within the world
reference frame.

The RealSense’s small size, wide field of view, high frame
rate, and global shutter make it a great option for mobile
and highly dynamic robotics applications. Lidar sensors were
also considered for use in this experiment but were ruled
out early on due to their size which was roughly 1/3 of
the Mini-Cheetah’s body size. The power consumption and
localization computation power required for lidar would
have been too demanding for the battery and computer
currently on-board the Mini-Cheetah. Moreover, the high
cost, gyroscopic forces, pointcloud sparsity, low frame rate,
and high minimum range (approximately 1 m) of lidar were
also significant factors in our sensor selection.

B. Framework Overview

Our framework consists three primary components: Vision
processing, locomotion control, and a motion library (Fig. 3).
Vision processing finds the robot’s absolute pose and builds
a heightmap surrounding the robot. The vision outputs are
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Fig. 3. Software Framework. There are three update loops in our software
setup.

sent to the locomotion controller through Lightweight Com-
munication and Marshaling (LCM) [15]. The locomotion
controller uses the visual data to adjust the direction of
walking and step locations. The motion library saves pre-
planned motions such as jumping and a recovery-stand-up
protocol. Once a predefined motion is called, the saved
joint position and torque trajectories are sent to the actuator
controllers to execute the commanded behavior.

Running the vision process in parallel with the real-time
control presents a challenge due to the high computational
demands of both systems. By optimizing the computations
with efficient memory handling, down sampling, and by
developing a compact and efficient custom dynamics engine,
we succeeded to run all computations including both the
vision process and locomotion control in the Mini-Cheetah’s
small UP board computer. Unfortunately, we could not
use the standalone setup in the experiments because of
difficulties accessing a USB 3.0 port. The depth camera’s
pointcloud data streaming rate varies significantly depending
on communication protocol; 90 Hz on USB 3.0 but only
10 Hz on USB 2.0. The UP board computer has a single
USB 3 port but the location of the connector is orthogonal to
four USB 2.0 ports. The current Mini-Cheetah setup requires
that one of the computer’s sides faces a wall, and so we must
forgo use of either the USB 3.0 port or the four USB 2.0
ports. In the experiment, the localization sensor, T265, is
connected to the UP board computer, but the depth camera,
D435, is wired to the external desktop. In the upcoming
hardware revision, we will resolve this issue and demonstrate
the vision-aided locomotion without tether.

III. VISION PROCESSING

The vision processing outputs the robot’s global po-
sition/orientation and a labeled heightmap. The posi-
tion/orientation process is solely done by Realsense T265

and the localization information is sent to both the heightmap
construction program and the real-time locomotion con-
troller. The robot’s absolute posture is used to transform
the pointcloud data into the global frame in the heightmap
construction process. The details of the computation are
given in the following sections.

A. Heightmap Construction
The pointclouds published by the RealSense camera are

in the reference frame of the camera. In order to be able
to plan a path or footsteps with this data, they need to be
transformed into the world reference frame. This is done
by first calculating a transformation from the world frame
to the camera frame by combining transformations from
world to localization camera, localization camera to robot’s
body center, and robot’s body center to pointcloud camera
then using the resulting transformation matrix to transform
the pointcloud data into the world reference frame. This
calculation is shown below in equation (1)

TWDC = TWTC TTC
B TBDC (1)

where W , DC, T C, and B represent the world, depth
camera, tracking camera, and robot’s body center respec-
tively, the superscript represents the reference frame and the
subscript represents the point. For example, TWDC represents
the transformation from the origin of the world reference
frame to the depth camera. These coordinate systems can be
seen in Fig. 2(b).

T represents a transformation matrix which is a member
of the Special Euclidean group, SE(3), which is the set
of all transformations that can be applied to a rigid body.
Each matrix T is composed of a rotation matrix, R and a
translation vector t as follows in equation (2):

TWDC =

[
RWDC tWDC
0>3 1

]
(2)

We use 03 to represent a three dimensional zero vector and
0n to represent a n-dimensional zero vector in this paper.

The complete transformation is then

PW = TWDCP
DC (3)

The world-frame pointcloud is then used to update a 2.5
dimension heightmap where the half-dimension refers to the
fact that the third dimension is encoded as the value in an
matrix of the other two dimensions. More specifically, the
heightmap is a representation of the world in which the X
and Y dimensions are discretized into 1.5 cm×1.5 cm cells.
For each pointcloud received, the value of a given cell in
the heightmap, representing the height at that location, is
calculated by taking the Z component of the most recent
pointcloud point in the corresponding X-Y cell range.

For the purposes of this experiment, the full world map
was only 15 m× 15 m discretized into a 1000 cell × 1000
cell grid. In order to increase the publishing rate, only a 100
cell × 100 cell (or 1.5 m × 1.5 m) region centered about
the robot’s current location is published at a given point in
time.



Fig. 4. An overview of the filtering process. From left to right; an example 3D pointcloud representing a set of stairs with a single noisy return.
The returns are binned in X and Y to form a 2.5D heightmap. The heightmap is then filtered with an opening morphological transformation. Finally, the
gradient is computed of the filtered heightmap and the value of the gradient is used to segment the terrain by traversability. In the above rightmost image,
dark blue represents STEPPABLE, yellow represents UNSTEPPABLE, green represents JUMP ONLY, and light blue represents IMPASSABLE. Note that these
colors have no meaning in the center two images and are only used for ease of visualization.

B. Filtering And Traversability Evaluation

A spatial filter was used to fill in sparse regions of the
pointcloud and to filter out extraneous sensor returns. The
filter consists of an erosion operation followed immediately
by a dilation operation. Both erosion and dilation are com-
puted by convolution of the heightmap with a 5 cell × 5 cell
elliptical kernel shown below:

0 0 1 0 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 0 1 0 0

 (4)

The center point of the kernel is referred to as the anchor
point. In the convolution, the kernel is scanned over the
image. In the case of erosion, the value of the output cell
corresponding to the location of the anchor point becomes
the minimum value of the original image overlapped by the
kernel. In the case of dilation, the value of the output cell
corresponding to the location of the anchor point becomes
the maximum value of the original image overlapped by
the kernel. The dilation operation serves primarily to fill in
sparsely sampled regions while the erosion operation serves
to eliminate extraneous returns [16].

The filtered heightmap is then used to compute a
traversability map. The traversability map has the same grid
cell structure as the heightmap but only four possible cell
values. The set of possible cell values are STEPPABLE,
UNSTEPPABLE, JUMP-ONLY, and IMPASSABLE.

A determination of STEPPABLE means that a foot can be
placed in that grid location; UNSTEPPABLE means that a
foot cannot be placed in that grid location but it can be
stepped over; JUMP-ONLY means that it can only be passed
by jumping; and IMPASSABLE means that there is no way
to pass that particular grid location.

The class of each cell in the grid is determined by a two
step process. The first step is to generate a gradient map
with the Sobel gradient operator [16]. The Sobel gradient
operator convolves two 3×3 kernels with the original image
to approximate the discrete derivative in X and Y at each
location in the image. For an image I, the gradient in X,
GX, and in Y, GY, are computed as follows in equations

(5) and (6):

GX =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I (5)

GY =

−1 −2 −1
0 0 0
+1 +2 +1

 ∗ I (6)

where ∗ represents two-dimensional convolution.
Once the discrete derivatives in X and Y are computed, the

gradient map takes maximum value in each cell. The gradient
map is then thresholded into the four different categories.

IV. LOCOMOTION CONTROL

For the walking motion control, our group’s hybrid con-
trol scheme presented in [17] is used. The control scheme
consists of two controllers, model predictive control (MPC)
and whole-body control (WBC). The combined controller
provides outstanding stability and robustness, which allow
us to accomplish 3.7 m/s forward running with the Mini-
Cheetah. An almost identical controller is used in this paper
with two additional features; obstacle avoidance and foothold
adjustment based on visual information.

A. Obstacle Avoidance
To avoid obstacles, we utilize a potential field algorithm.

The presented algorithm is useful to let the robot find an
obstacle free path subject to the given walking direction
command. Therefore, we assume that there is high-level
direction command which may be informed by a global
map while allowing the robot to overcome smaller scale
irregularities autonomously.

At every iteration of the control loop, if we identify an
object with an impassable height, we add a radial basis
function (RBF) at the location of the object. To avoid
multiple potential fields overlapping on the same object, we
do not allow additional RBFs to be generated near existing
ones. In the final velocity command computation, the func-
tion’s gradient is added to the desired path command. This
simple method works effectively in a real system without
any additional path finding or prior knowledge about the
environment.



Fig. 5. Jumping motion. The joint trajectories and torques are computed
by offline optimization, and the robot perform the jump by executing the
joint commands.

B. Footstep Planning

In the footstep planning, we first compute the default step
location with the following equation:

pfoot,i = pshoulder,i, (7)

where,

pshoulder,i = pbody +Rz (ψ) li, (8)

psymmetry =
tstance

2
v + k

(
v − vcmd

)
. (9)

In Eq. (8), pbody is the body position and li is i-th leg
shoulder location with respect to the body’s local frame.
Since Rz (ψk) is rotation around yaw direction with the
current body yaw angle, pshoulder,i is the i-th shoulder
location with respect to the global frame. psymmetry is a
Raibert heuristic [18] that makes the leg’s landing angle and
leaving angle be identical if the robot’s velocity is the same
as the commanded velocity. In our setup, we use 0.03 for
the feedback gain, k.

Once the step location is calculated, we then check the
traversability of the selected location. If our first selection
is not STEPPABLE, we then search the neighboring grid
locations for the nearest location that is STEPPABLE. The
search is simply done by iteratively checking the next cell
over, spiraling out from the initial location. Once we find
a proper place to step as determined by the traversability
map, we read the height of that point and adjust the swing
and footstep landing height based on the height of that step
location.

V. JUMP MOTION

In addition to the walking controller, we prepared jumping
motion for scenarios in which the robot encounters an
obstacle that is too high to step over. The jump controller
was obtained in the same way the backflip controller [14]
was created. The motion for the jump was generated using
2-D non-linear optimization of a 5-link robot. CassADi [19],
an open-source optimization library was used to execute the
non-linear optimization. The optimization generates a set of
joint states and torques for each time-step of the trajectory.

The contact states of the feet of the robot (4 legs in contact
with the ground, 2 legs in contact with the ground, 0 legs in
contact with the ground - flight) were pre-defined and used
as a scheduler. The jump was then generated by minimising
a cost function and constraining the joint states and torques
to certain conditions during trajectory. The cost function was

velocity command obstacle virtual potential field

Fig. 6. Obstacle avoidance. Mini-Cheetah navigates around an obstacle
because of the repulsive force generated by the virtual potential field.

defined to be the error between the desired final joint state
of the robot and the joint state at each timestep while still
being subject to trajectory constraints. The selection of this
cost function minimizes excessive leg swinging during flight
which removes undesirable behaviours such as legs colliding
with each other at any time.

The explicit constraints set were the initial and final posi-
tions of the robot (CoM), maximum joint torques, minimal
normal force for feet in contact (to prevent slippage) and
zero forces on feet that are not in contact with the ground.
Other constrains and limits, which were implicit, arise from
actuator dynamics and robot dynamics. The purpose of these
constraints was to ensure that the robot achieved the desired
goal location. Fig. 5 shows a sequence of frames representing
an optimal jump trajectory found using this method.

When run on hardware, the controller was switched to
a landing controller towards the end of the flight. This
was achieved using joint PD control on a wider stance for
stability.

VI. RESULTS

In order to test our proposed method, we designed the
experimental environment to be a gauntlet of challenges
including cluttered terrain, obstacles, and stacked panels as
shown in Fig. 6 and Fig. 7. We first accomplished each task
repeatably in isolation before finally overcoming all obstacles
in a single run. The Mini-Cheetah was able to successfully
track a specified path, see and build a map of its environment,
plan and execute safe footsteps on and over obstacles up
10 cm tall, recover independently if it had fallen, identify
obstacles which it could not traverse and modify its path to
avoid them, and finally jump up onto a 13 cm platform.

A. Obstacle Avoidance

In the test presented in Fig. 6, the robot moves back
and forth by following the given trajectory, and once it
detects an object, Mini-Cheetah goes around the obstacle
autonomously. When we move the obstacle along the given
path, the robot is able to update its model of the environment
and navigate accordingly (see Fig. 6(b)).

B. Rough Terrain Locomotion and Jump

In the test presented in Fig. 7, we made cluttered terrain
with wood blocks to verify the locomotion capability of
Mini-Cheetah over irregular terrain. The experiment consists
of two parts, rough terrain locomotion and jumping onto
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Fig. 7. Experiment result overview. Our experimental setup is designed to show the exploration capability of the Mini-Cheetah robot through rough
terrain locomotion requiring a jump.
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Fig. 8. Walking over rough terrain. The heightmap colors indicate the
traversability determination of the terrain. The step planner adjust footholds
based on the labelled heightmap.

a platform. The Mini-Cheetah followed a straight path at
0.33 m/s over obstacles up to 10 cm (nearly half of the
robot’s ground clearance). Fig. 8 shows how the controller
perceived the terrain. After traveling 2.3 m along this path,
the jump maneuver was manually engaged. The robot landed
more than a body length forward and with all four feet on
top of the 13 cm platform.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a system of modules and a cor-
responding integration framework which allow for dynamic,
rapid exploration of unknown and unstructured environments
with a compact, lightweight, and robust robotic platform.
These low level autonomy modules and perception integra-
tion will bridge the gap between the hardware and control
progress to date and the higher level autonomy work to come.
As we distribute the Mini-Cheetah platform to collaborators,
we hope that this progress will catalyze further developments

in controls, perception, and autonomy for highly dynamic
legged systems. In particular, hope to see the Mini-Cheetah
manipulate its environment, navigate rough terrain upwards
of 3 m/s, and develop a more nuanced understanding of the
surrounding objects in its environment.

For the time being, we have assumed that all items
detected by the depth camera are rigid objects. However,
this assumption is not valid when the robot encounters grass,
mud, or other soft materials. In the future, we plan to utilize
visual recognition algorithms to determine an obstacle’s
rigidity as well as its dimensions and location.

Another important update is the hardware platform embed-
ding of the vision system. The next generation Mini-Cheetah
platform will include four Intel RealSense cameras in its
body as well as a dedicated on-board vision computer. The
entire system will be powered by an on-board battery, so the
new Mini-Cheetah will be a fully sensorized and untethered
system.
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