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Abstract
We propose a stochastic optimal feedback control law for generating natural robot arm
motions. Our approach, inspired by the minimum variance principle of Harris and Wolpert
(1998 Nature 394 780–4) and the optimal feedback control principles put forth by Todorov and
Jordan (2002 Nature Neurosci. 5 1226–35) for explaining human movements, differs in two
crucial respects: (i) the endpoint variance is minimized in joint space rather than Cartesian
hand space, and (ii) we ignore the dynamics and instead consider only the second-order
differential kinematics. The feedback control law generating the motions can be
straightforwardly obtained by backward integration of a set of ordinary differential equations;
these equations are obtained exactly, without any linear–quadratic approximations. The only
parameters to be determined a priori are the variance scale factors, and for both the two-DOF
planar arm and the seven-DOF spatial arm, a table of values is constructed based on the given
initial and final arm configurations; these values are determined via an optimal fitting
procedure, and consistent with existing findings about neuromuscular motor noise levels of
human arm muscles. Experiments conducted with a two-link planar arm and a seven-DOF
spatial arm verify that the trajectories generated by our feedback control law closely resemble
human arm motions, in the sense of producing nearly straight-line hand trajectories, having
bell-shaped velocity profiles, and satisfying Fitts Law.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the case of robots operating in human environments and
intended to interact with humans, for various reasons it
is usually desirable to have the robot’s motions resemble
human movements. The existing literature on human-like
robot motion generation is focused for the most part on
finding ways for the robot to imitate human motions: given
a set of human motion sequences obtained via, e.g., motion
capture data, such sequences are then used as training sets
for a learning algorithm, which typically extracts a set
of movement primitives—for example, a basis of motion
trajectories obtained via principal component analysis of the
training data—that are then used to interpolate more general
robot motions (Pollard et al 2002, Arikan and Forsyth 2002,
Ren et al 2005, Lim et al 2005, Harada et al 2006, Yamane

1 Author to whom any correspondence should be addressed.

et al 2010). Because the human and robot typically have
different dimensions and topologies, finding appropriate ways
to map human motions to the robot have dominated this line
of investigation. Numerous variations on this theme have been
proposed, but the end result in most cases is a motion trajectory
parametrized with respect to time.

While for animation purposes a time-parametrized motion
trajectory may be sufficient, in robotics a control law,
preferably in feedback form, is generally much more useful.
Among other things, a feedback control law is far more robust
to noise and modeling errors than any open-loop control.
In principle one could supply the motion trajectory as a
reference trajectory to a tracking controller, which likely
uses feedback to correct for small tracking errors. Generating
the motion trajectory, however, not only requires substantive
computational effort, but is also subject to modeling errors.

Such practical difficulties explain to some extent the
popularity of artificial potential field-based methods for robot
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planning and control (Khatib 1986); these lead to purely
feedback control-based realizations for generating feasible
motions, that also have the effect of blurring the traditional
distinction between planning (in the sense of generating a
reference trajectory) and control (in the sense of tracking
a reference trajectory). Of course, the choice of potential
function defines the nature of the motion, and finding a
potential function that generates natural motions remains
elusive.

The question of what constitutes a natural motion, or more
fundamentally, how humans generate movements, is of course
the central question in human motor control. While universal
principles are not easy to come by, it is by now generally agreed
that, at least for simple point-to-point arm motions, there are
certain features shared by nearly all humans:

(i) the hand traces nearly a straight line;
(ii) the hand speed profile is bell-shaped;

(iii) the motions satisfy Fitts Law (Fitts 1954), which relates a
movement’s duration to its difficulty according to

T ∝ log2

(
2A
W

)
, (1)

where T denotes the movement duration, A the distance
between the hand’s start and goal configurations, and W
is the target width.

These observations serve as a useful benchmark for
evaluating various principles that attempt to explain human
arm movements. Of the many hypotheses on human
movement, the equilibrium point hypothesis (see Feldman
1966, Flash 1987, Shadmehr 1998 and the references
cited therein) and the minimum variance hypothesis (Harris
and Wolpert 1998) have been particularly relevant from
the perspective of robotics. Loosely speaking, the former
postulates that human muscles function as pairs of antagonistic
springs, and that humans generate movements by shifting
their equilibrium lengths. While questions linger about how
accurately the equilibrium point hypothesis explains human
movements (see, e.g., Hinder and Milner 2003), this is an
attractive concept for robot control that is in many respects
consistent with the artificial potential field-based approach to
motion generation and control—without necessarily resorting
to complex internal dynamics calculations, motions are
generated simply by application of a feedback control law.
The difficulty, and a crucial one at that, is that the equilibrium
point hypothesis in itself does not suggest any specific potential
field that leads to natural, human-like robot motions.

The minimum variance hypothesis (Harris and Wolpert
1998) takes the point of view that motor control signals are
corrupted by noise whose variance is proportional to the signal
amplitude—this explains, among other things, the observed
variations in repeated trials of a motion performed by a
person—and that the human motor control system generates
motions that attempt to minimize the position variance at the
target. The experimental evidence presented in Harris and
Wolpert (1998) makes a compelling case for the minimum
variance hypothesis, with predicted motions satisfying the
characteristic features of human arm movements.

One of the challenges in applying the minimum variance
principle to generate robot motions is that the solution of
a nonlinear stochastic optimal control problem is required.
Not only is this computationally challenging (assuming that a
solution even exists), but typically the solutions are obtained in
the form of time trajectories rather than the desired feedback
control law form. In Simmons and Demiris (2005) a discrete-
time linear–quadratic regulator implementation of a minimum
variance controller is presented, but this formulation ignores
both the inherent nonlinearities in the problem and the proper
rules for stochastic calculus; as is well-known, the calculus
for systems driven by Brownian motion is fundamentally
different from the rules for ordinary calculus. In Todorov and
Jordan (2002) a highly compelling case is made for optimal
stochastic feedback control as a framework for explaining
human movements. Even here, however, the intractability of
finding solutions in the general nonlinear case is recognized,
and only linear–quadratic Gaussian approximation techniques
are developed.

In this paper we present, as our main contribution, a
robot feedback control law based on the minimum variance
hypothesis. Unlike (Harris and Wolpert 1998), which considers
the dynamics, our formulation is based on a continuous-time,
second-order differential equation formulation of the robot’s
kinematics. This is an important advantage when considering
that most commercially available humanoid robots today allow
for only kinematic (position, and depending on the accuracy
of the joint encoders, velocity and acceleration) control; very
few humanoid robots allow for direct joint torque control. Our
method also correctly accounts for the signal-dependent noise
process by following the rules for stochastic (Itō) calculus.

A second point of departure from the original minimum
variance hypothesis of Harris and Wolpert (1998) is that we
minimize the endpoint variance in joint space rather than
Cartesian hand space. This entails the adjustment of scale
factors for the variance of the input signal noise depending
on the target location. In the case of planar two-link arm
motions we show that there is in fact a neuromuscular basis
for choosing these values a priori; for more general seven
degree of freedom arms, the choice of variance scale factors
seems to have minimal effect on the resulting arm motions. As
a result of formulating the problem entirely in joint space,
our optimal feedback control law is obtained in analytic
form by exactly solving the Hamilton–Jacobi–Bellman (HJB)
equations. The optimal time-varying gains can be obtained
by integrating a set of simple first-order ordinary differential
equations, analogous to solving the matrix Riccati equations
in the classical linear–quadratic Gaussian control framework.
Unlike existing approaches, our method involves no linear–
quadratic approximations.

Despite these two variations from the original minimum
variance hypothesis—ignoring the dynamics and considering
only the kinematics in the state equations, and formulating
the endpoint variance in joint space—extensive numerical
experiments with our feedback control law confirm that the
resulting motions are indeed quite human-like with respect to
the criteria described earlier; for both a two-link planar open
chain and a spatial seven degree-of-freedom arm, we find that
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the resulting motions closely match those of typical human
arm motions.

The paper is organized as follows. In section 2 we
first present some essential background on stochastic optimal
control, followed by a derivation of our optimal feedback
control law for a two-link planar chain, and its extension
to general n-link spatial open chains. Numerical experiments
comparing the generated motions with human arm movements
are presented in section 4. We conclude in section 5 with
a summary and some discussion of the possible broader
implications of our results to human motor control.

2. Optimal feedback control law

2.1. Stochastic optimal control preliminaries

We consider the stochastic optimal control problem in
a continuous time setting. The state dynamics is of
the form

dq = f (t, q, u) dt + g(t, q, u) dω, (2)

where q ∈ Rn is the state, u ∈ Rp is the input control,
dω ∈ Rm denotes a vector of m independent Wiener processes
interpreted in the Itō sense, and the mappings f : R × Rn ×
Rp → Rn and g : R × Rn × Rp → Rn×m are right-continuous
in t and uniformly Lipschitz continuous in (q, u). We assume
the initial state q(t0) is given. The objective is to find u that
minimizes the terminal cost

inf
u

E[φ(t f , q(t f ))], (3)

where E[·] denotes expectation. The optimal cost-to-go
function V is defined as follows:

V (s, q) = inf
u

E[φ(t f , q(t f ))]. (4)

Any twice-differentiable V (t, q) that is optimal must
necessarily satisfy the following HJB equation:

−Vt (t, q) = + inf
u

[
Vq(t, q, u) f (t, q, u)

+ 1
2

tr(Vqq(t, q)g(t, q, u)g(t, q, u)T )

]
, (5)

where subscripts denote partial differentiation, e.g., Vt denotes
the partial derivative of V with respect to t, and Vq and Vqq are
given by

Vq =
[
Vq1 · · · Vqn

]
∈ R1×n (6)

Vqq =

⎡

⎢⎣
Vq1q1 · · · Vq1qn

... · ·
...

Vqnq1 · · · Vqnqn

⎤

⎥⎦ ∈ Rn×n. (7)

The corresponding boundary conditions for the HJB equation
are

V (t f , q(t f )) = φ(t f , q(t f )). (8)

Stochastic optimal control problems in which the
objective function contains an integral term, i.e.,

inf
u

E
[
φ(t f , q(t f )) +

∫ t f

0
L(t, q, u) dt

]
, (9)

where L ∈ R is differentiable in (t, q, u), can be transformed
to the earlier form by introducing a new state variable
q0(t) =

∫ t
0 L(s, q, u)ds; the equation dq0 = L(t, q, u)dt is then

augmented to the original state equations, and the objective
function (9) can now be expressed as

inf
u

E[φ(t f , q(t f )) + q0(t f )] (10)

which is of the same form as (3). Further basic results on
stochastic optimal control can be found in, e.g., Seierstad
(2008).

2.2. Planar two-link open chain

We now consider a planar two-link open chain consisting of
two revolute joints, which has been widely used to model
human arms performing planar reaching tasks. Following
(Harris and Wolpert 1998), we assume signal-dependent noise
enters into the second-order kinematics of the chain as follows.
Denoting the revolute joint angles by (θ1, θ2), the state q ∈ R4

is defined according to q1 = θ1, q2 = θ2, q3 = θ̇1, and q4 = θ̇2.
The state equations are given by

d

⎡

⎢⎢⎣

q1

q2

q3

q4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

q3

q4

u1

u2

⎤

⎥⎥⎦ dt +

⎡

⎢⎢⎣

0 0
0 0√

σ1|u1| 0
0

√
σ2|u2|

⎤

⎥⎥⎦

[
dw1

dw2

]
,

(11)

where u1, u2 denote the input joint accelerations, dw1, dw2

are independent Wiener processes, and σ1, σ2 are positive
constants corresponding to the noise variance. Observe that
the noise terms in the state equations are scaled by the input
signal strengths |u1| and |u2|.

In this paper we consider the objective function given by

inf
u

E[(q(t f ) − q̄)T D(q(t f ) − q̄)], (12)

where q̄ = (θ̄1, θ̄2,
˙̄θ1,

˙̄θ2) denotes the desired final state and
D = Diag{d1, . . . , d4} is an arbitrary positive definite diagonal
matrix. The corresponding HJB equations are

−Vt = inf
u

[
V1q3 + V2q4 + V3u1 + V4u2

+ 1
2
σ1V33u2

1 + 1
2
σ2V44u2

2

]
, (13)

where we use the shorthand notation Vi = ∂V
∂qi

, Vi j = ∂2V
∂qi∂q j

.
The Hamiltonian is given by

H = V1q3 + V2q4 + V3u1 + V4u2 + 1
2σ1V33u1

2 + 1
2σ2V44u2

2.

(14)

Since no constraints are imposed on u, the necessary conditions
∂H
∂ui

= 0, i = 1, 2, can be applied to derive the optimal form of
the u∗

i :

u∗
1 = − V3

σ1V33
, u∗

2 = − V4

σ2V44
. (15)

Substituting the above into the HJB equations (13) leads to

− Vt = inf
u

[
V1q3 + V2q4 − 1

2σ1

V 2
3

V33
− 1

2σ2

V 2
4

V44

]
. (16)

3
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Taking into account the quadratic cost function, we assume
the following form for V :

V (t, q) = k1q2
1 + k2q2

2 + k3q2
3 + k4q2

4 + k5q1 + k6q2 + k7q3

+ k8q4 + k9q1q3 + k10q2q4 + k11, (17)

where only the ki(t) depend explicitly on t. The optimal u∗
i of

equation (15) then becomes

u∗
1 = − 2k3q3 + k7 + k9q1

2σ1k3
(18)

u∗
2 = − 2k4q4 + k8 + k10q2

2σ2k4
. (19)

Substituting (17) into the HJB equations (16) and matching
terms on both sides then leads to the following set of eleven
ordinary differential equations:

k̇1 =
k2

9

4σ1k3
k̇2 =

k2
10

4σ2k4

k̇3 = −k9 + k3

σ1
k̇4 = −k10 + k4

σ2

k̇5 = k7k9

2σ1k3
k̇6 = k8k10

2σ2k4

k̇7 = −k5 + k7

σ1
k̇8 = −k6 + k8

σ2

k̇9 = −2k1 + k9

σ1
k̇10 = −2k2 + k10

σ2
k̇11 = k2

7

4σ1k3
+

k2
8

4σ2k4
(20)

subject to the following set of terminal boundary conditions
at t f :

ki(t f ) = di, i = 1, . . . , 4,

k5(t f ) = −2d1q̄1, k6(t f ) = −2d2q̄2,

k7(t f ) = −2d3 ˙̄q1, k8(t f ) = −2d4 ˙̄q2

k9(t f ) = k10(t f ) = 0, k11(t f ) = q̄T Dq̄. (21)

Moreover, if the final joint velocities ˙̄q1 and ˙̄q2 are both zero,
the feedback gains k5, k6, k7, and k8 can then be expressed as

k5 = −2k1q̄1 − k9q̄3, k6 = −2k2q̄2 − k10q̄4,

k7 = −k9q̄1 − 2k3q̄3, k8 = −k10q̄2 − 2k4q̄4.
(22)

(Note: The above can be verified by defining the variables
c = k5 + 2k1q̄1 + k9q̄3 and d = k7 + k9q̄1 + 2k3q̄3, in which
case

d
dt

[
c

d

]

=

⎡

⎢⎢⎣
0

k9

2σ1k3

−1
1
σ1

⎤

⎥⎥⎦

[
c

d

]

+
[
−2k1

−k9

]

q̄3 (23)

follows from (20). Since ˙̄q1 = q̄3 = 0 and c(t f ) = d(t f ) =
0 follows from the boundary conditions (21), backward
integration of the above differential equation leads to c(t) =
d(t) = 0, and equation (22) holds over the interval t ∈ [0, t f ].
Analogous results for (k6, k8) also hold by the same line of
reasoning). Also from (18) and (19), the optimal u∗

i can be
expressed in the following more intuitive form:

u∗
1 = −2k3q3 + k7 + k9q1

2σ1k3
= −k9(q1 − q̄1) + 2k3(q3 − q̄3)

2σ1k3
(24)

u∗
2 =−2k4q4 + k8 + k10q2

2σ2k4
= −k10(q2 − q̄2) + 2k4(q4 − q̄4)

2σ2k4
.

(25)

Note that because k3 and k4 appear in the denominators of
some of the differential equations and optimal inputs above,
we need to examine under what conditions, if any, k3 and k4

become zero during the duration of the motion. The following
proposition shows that this can never occur.

Proposition 1. The solutions ki(t), i = 1, . . . , 11 to
the differential equations above are all finite-valued and
continuous over the interval t ∈ [0, t f ].

Proof. Observing that the equation for k3 is coupled only with
those for k1 and k9, we examine the differential equations for
(k1, k3, k9) more closely; the equations for (k2, k4, k10) are
structurally identical. Without loss of generality we assume
the diagonal matrix D is the identity. Letting x = k1, y = k3,
z = k9, and c = σ1, we have

ẋ = z2

4cy

ẏ = − z + y
c

ż = − 2x + z
c
,

with boundary conditions x(t f ) = y(t f ) = 1 and z(t f ) = 0.
Since the boundary conditions are given at t f —the equations
need to be integrated backward in time—we make the
substitution t ← t f − t and examine the reverse flow; we
therefore consider the following differential equations with
respect to this newly defined t:

ẋ = − z2

4cy
(26)

ẏ = z − y
c

(27)

ż = 2x − z
c
, (28)

with initial boundary conditions x(0) = y(0) = 1 and
z(0) = 0. It is enough to show that a solution (x(t), y(t), z(t))
exists for all t " 0 and further satisfies y(t) > 0. For this
purpose consider the function V (x, y, z) = xy − 1

4 z2. Taking
the time derivative of V along the solution (x(t), y(t), z(t)),

V̇ = ẋy + xẏ − 1
2

zż

= − 1
c

(
xy − z2

4

)

= − V
c

,

whose solution is given by V (t) = e−t/cV (0) = e−t/c.
Therefore along a solution trajectory we have

V (x(t), y(t), z(t)) = e−t/c = x(t)y(t) − 1
4 z(t)2, (29)

or

x(t)y(t) = 1
4 z(t)2 + e−t/c > 0.

4
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Figure 1. Feedback gain trajectories for different movement durations. (a) Movement time = 1.0 s. (b) Movement time = 2.5 s.

Since both x(0) and y(0) are positive, it follows that both
x(t) and y(t) remain positive for all t " 0. In fact, as t
approaches infinity, from equation (29) it can be seen that
z2 approaches 4xy; in the limit the differential equation (26)
becomes ẋ = −x/c, whose solution x(t) clearly approaches
zero as t goes to infinity. It thus follows from (28) that z(t)
goes to zero as t approaches infinity; this in turn implies, from
(27), that y(t) also goes to zero in the limit. Thus, the solution
trajectory (x(t), y(t), z(t)) originating from (1, 1, 0) at t = 0
approaches zero in the limit, with x(t), y(t) > 0 for all t. This
in turn implies that both k3(t) and k4(t) remain positive for
all t ∈ (−∞, t f ]. The other ki(t) are therefore all well-defined
(finite-valued and continuous) over the interval [0, t f ]. #

Backward numerical integration of the differential
equations in {k1(t), . . . , k11(t)} also confirms the above result.
Figure 1 plots time profiles of k1(t), k3(t), k5(t), k7(t), and
k9(t) for t f = 1.0 s and t f = 2.5 s, respectively, and c set to 1.
Since typical arm reaching movements take on the order of 1–
2 s at most, we see that the gains are bounded and well-behaved
for finite duration movements.

2.3. Comparison with Harris and Wolpert’s formulation

In the original minimum variance formulation proposed in
Harris and Wolpert (1998), the cost function is defined in

Cartesian hand space rather than joint space, and the dynamic
equations are taken to be the state equations. Specifically,
with θ = (θ1, θ2) denoting the joint variables, the dynamic
equations are of the form

u = M(θ )θ̈ + b(θ , θ̇ ), (30)

where u ∈ R2 denotes the vector of input joint torques,
M(θ ) ∈ R2×2 is the mass matrix, and b(θ , θ̇ ) ∈ R2 is a two-
dimensional bias torque vector. The end-effector Cartesian
coordinates (x, y) are determined from (θ1, θ2) via the forward
kinematics:

x = l1 cos θ1 + l2 cos(θ1 + θ2) (31)

y = l1 sin θ1 + l2 sin(θ1 + θ2), (32)

where l1, l2 denote the link lengths. As before, defining
q1 = θ1, q2 = θ2, q3 = θ̇1, q4 = θ̇2, the state equations
are then of the form

dq1 = q3 dt (33)

dq2 = q4 dt (34)

d
[

q3

q4

]
= M−1 (u − b) dt +

[
|u1| dw1

|u2| dw2

]
. (35)

5
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The cost function associated with the minimum variance
criterion is given by

inf
u

∫ t f +ts

t f

Var[x(s)] + Var[y(s)] ds, (36)

where ts is a fixed post-movement settling time, Var[x] =
E[x2] − E2[x], and Var[y] = E[y2] − E2[y]. Since E[x] and
E[y] are assumed fixed to some known desired values over the
interval [t f , t f +ts], the integrand of the cost function (ignoring
the constant E2[x] and E2[y] terms) simplifies to

E[x2] + E[y2] = E[l2
1 + l2

2 + 2l1l2 cos q2]. (37)

It is interesting to observe that the cost function depends on
q2 alone; there is no dependence on q1. Moreover, both the
mass matrix M and the bias torque vector b for the two-link
planar chain also depend only on q2. The situation is much the
same even for general n-link planar chains; that is, q1 does not
appear explicitly either in the cost function or the dynamics,
since E[x2+y2] is the squared length from the origin to the end-
effector and obviously depends only on the value of q2 = θ2.

The problem as formulated is highly nonlinear and does
not lead to analytic solutions; in fact, little if anything can
be said about even the existence of solutions. For this reason
(Harris and Wolpert 1998), and other works like (Simmons and
Demiris 2005, Todorov and Jordan 2002), implement a linear–
quadratic approximation to the minimum variance model.

2.4. Choosing variance scale factors

In the two-link planar arm formulation, observe that the
variance scale factors σ1 and σ2 enter into the feedback
gain equations (20), and thus influence the resulting optimal
arm motion. Larger values of σ1 and σ2 produce larger
input noise, and can be identified with the neuromuscular
motor noise levels corresponding to the relevant muscles. In
Gabriel (1997), an attempt is made to experimentally measure
neuromuscular signal levels associated with the major arm
muscles. Among its findings, it is suggested that for normal
speed arm motions involving the elbow, the triceps brachii
has a greater associated noise variance than the biceps brachii.
The biceps and triceps brachii act as an agonist-antagonist pair
during elbow flexion, and conversely as an antagonist-agonist
pair during elbow extension. Since for typical motions the
agonist muscle is the dominant muscle, one would expect the
noise variance to be larger for arm motions that involve elbow
extensions.

Of course, the robot arms that we consider in this paper are
actuated not by muscles, but by rotary actuators that drive the
joints. Hence, in the case of the planar arm, to apply larger input
signal noise levels for elbow extensions rather than flexions
requires that the relative values of σ1 and σ2 not be assumed
constant, but rather allowed to vary according to the start and
goal arm postures.

Toward this end, we perform numerical experiments
to find values for σ1 and σ2 that lead to natural arm
movements, and determine if they are consistent with our
intuitive reasoning about input noise levels outlined earlier.
We consider a two-link planar arm with equal link lengths
L1 = L2 = 0.35 m, at a range of initial postures defined by

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6−0.1

0

0.1

0.2

0.3

0.4

0.5

X(m)

Y
(m

)

Figure 2. Two-link planar arm used in variance scale factor
determination experiments. Blue circles represent some of the goal
postures in task space.

q1 = 0.0 radians and q2 ∈ [0.6, 2.6] radians (figure 2 shows
the chain at the initial posture q1 = 0, q2 = 2.1). The goal
postures are taken to be a set of equally spaced points on the
circle in q1-q2 space, centered at the initial posture, with a
radius 0.5 radians. The total movement duration for each goal
posture is set to 0.8 s. For all goal postures we then attempt
to determine the values of σ1 and σ2 in the range [0, 0.5] that
produce the most natural arm movements, by solving a set
of optimization problems. From the features of point-to-point
arm motions (the hand traces a nearly linear path, velocity
profiles are bell-shaped, etc), we now minimize a weighted
objective function of the form

J = w1Jtraj + w2Jvel,

where Jtraj =
∫
D dA is the area of the task space region enclosed

by the generated trajectory and a straight line connecting the
start and goal points, and

Jvel =
(

tpeak − t f

2

)2

measures the deviation from a bell-shaped velocity profile
(tpeak denotes the time at which the hand tip velocity reaches
a maximum). The weights w1 and w2 are set so that Jtraj and
Jvel are of similar magnitude for the trajectories generated by
our controller.

The results of the optimization are shown in the polar plot
of figure 3. The origin indicates the initial posture q1(0) = 0,
q2(0) ∈ [0.6, 2.6]. For each initial posture, and each heading
direction emanating radially from the origin, the optimal values
for σ1 and σ2 are plotted in the figure; these are indicated by the
black (σ1) and gray (σ2) regions, respectively. Note especially
the discontinuities that occur when the heading angle θ equals
0, π/2, π , and 3π/2. These can be explained by examination
of equations (24) and (25) for the optimal u∗

i , which we repeat
here:

u∗
1 = −k9(q1 − q̄1) + 2k3(q3 − q̄3)

2σ1k3

u∗
2 = −k10(q2 − q̄2) + 2k4(q4 − q̄4)

2σ2k4
.
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Figure 3. Experimental results for determining variance scale
factors. Values for σ1 and σ2 are indicated in black and gray,
respectively.

Suppose the initial and final joint configurations are
(q1(0), q2(0)) and (q̄1, q̄2), respectively. If the desired heading
angle is given by θ = 0, this implies that q̄2 = q2(0). From
the above equations for the optimal feedback control it can be
seen that

u∗
1 = − k9(q1 − q̄1) + 2k3(q3 − q̄3)

2σ1k3

u∗
2 = 0.

Since u∗
2 = 0, only σ1 enters into the input control; the relative

value of σ2 has no effect on the optimal arm motion when
θ = 0. The discontinuities that occur at θ = π/2,π , 3π/2
can also be explained similarly.

We also observe that the results of figure 3 vary only
slightly for different kinematic parameters and movement
durations. The choice of variance parameters for spatial n-link
open chains is addressed in the next section.

3. Spatial open chains

The two-DOF planar open chain results can be
straightforwardly extended to general n-DOF spatial open
chains. Denoting the joint angles by (θ1, . . . , θn), the state
q ∈ R2n is given by
[
q1 · · · qn qn+1 · · · q2n

]

=
[
θ1 · · · θn θ̇1 · · · θ̇n

]
. (38)

The state equations are

d
[

qi

qn+i

]
=

[
qn+i

ui

]
dt +

[
0√

σi|ui|

]
dωi, i = 1, . . . , n.

(39)

Figure 4. Rotation of the shoulder joint: α is the rotation angle for
the shoulder joint about ω⃗s, qe is the rotation angle for the elbow
joint.

T1T2

T4

T3

T5

X

10cm

Figure 5. Initial and target positions.

The objective function remains the same as equation (12),
where D = Diag{d1, . . . , d2n}. Setting

H =
n∑

i=1

Viqn+i + Vn+iui + σi

2
Vn+i,n+iu2

i , (40)

from the necessary conditions ∂H
∂ui

= 0, i = 1, . . . , n, the
optimal u∗

i are given by

u∗
i = − Vn+i

σiVn+i,n+i
, ; i = 1, . . . , n. (41)

The corresponding HJB equations are given by

− Vt = inf
u

[
n∑

i=1

Viqn+i − 1
2σi

V 2
n+i

Vn+i,n+i

]

, (42)

where Vi and Vi,i respectively denote the first and second
derivatives of V with respect to qi. Assuming a solution V (t, q)
of the form

V (t, q) = k0(t) +
n∑

i=1

ki1(t)q2
i + ki2(t)q2

n+i + ki3(t)qi

+ ki4(t)qn+i + ki5(t)qiqn+i, (43)
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Figure 6. Comparison of proposed controller simulation results with Wolpert’s simulation results and human experiment data. Upper figures
show the hand space path. Lower figures show the tangential velocity profile.
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Figure 7. Feedback gain trajectories of movement T3 → T1.

the optimal feedback controls u∗
i are of the form

u∗
i = −2ki2qn+i + ki4 + ki5qi

2σiki2
, i = 1, . . . , n. (44)

Since the feedback gains ki j(t) depend explicitly on t only, we
obtain a set of ordinary differential equations for the gains as
follows:

k̇i1 =
k2

i5

4σiki2
(45)

k̇i2 = −ki5 + ki2

σi
(46)

k̇i3 = ki4ki5

2σiki2
(47)

k̇i4 = −ki3 + ki4

σi
(48)

k̇i5 = −2ki1 + ki5

σi
(49)

k̇0 =
n∑

i=1

k2
i4

4σiki2
, (50)
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Figure 8. Optimal paths (dashed line) and their tangential velocity profiles. (a) T3 → T1. (b) T1 → T4. (c) T4 → T5.

with the following boundary conditions:

ki1(t f ) = di, (51)

ki2(t f ) = dn+i, (52)

ki3(t f ) = −2diq̄i, (53)

ki4(t f ) = −2dn+iq̄n+i, (54)

ki5(t f ) = 0, (55)

k0(t f ) = q̄T Dq̄, (56)

for i = 1, . . . , n.
Like the two-link planar chain case, appropriate values for

the variance scale parameters σi need to be chosen according
to the initial and goal postures. The procedure for the two-
link planar chain does not directly generalize to arms with
higher degrees of freedom. We therefore propose an alternative
method of choosing σi values for the seven-DOF human-like
arm of figure 10, that makes use of our earlier planar chain
results of figure 3.

Since the three wrist joints have minimal effect on the
overall arm motion, we consider the motion of the shoulder and
elbow joints only. Given initial and final configurations of the
arm, the proximal link in the initial configuration is assumed
rotated by an angle α about the ω⃗s to its final configuration
(see figure 4). The unit vector ω⃗e is assumed to be the rotation
axis for the elbow joint. We first determine ω⃗s and α, with α

restricted to [0,π ]. If the inner product of ω⃗s and ω⃗e of initial

1.5 2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

log2 (2A/W)

T
im

e(
se

c)

Figure 9. Movement time required to satisfy desired end-point
accuracy.

configuration is positive, qs is set to α; if negative, qs is set to
−α. qs as obtained is then identified with q1 of the two-DOF
planar chain at the goal configuration (the initial value of qs is,
like that for q1, zero). The initial and final values for the elbow
joint qe are further identified with the initial and final values
for the planar chain elbow joint q2, respectively.

Once initial and final values for qs and qe are obtained,
the heading angle in joint space is determined, and values for
the variance scale factors σs and σe are derived from the planar
chain results of figure 3. Given σs, we then determine, among
the three shoulder joint axes in the initial configuration, the
one that is closest to ω⃗s in a least norm sense; label this joint
axis m. σm is then set to σs, while the σi for the remaining six
joints are set to σe.
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Figure 10. The seven-DOF robot arm used in the experiments.

The approach outlined is intuitively simple and
computationally straightforward, and can be viewed as a first-
order approximation of the four-DOF shoulder–elbow joint

arm by a two-DOF planar arm. Of course, there are alternative,
more sophisticated ways of making this approximation.

4. Experimental results

Numerical experiments are performed to evaluate whether
the motions generated by our feedback control law resemble
human arm movements (i.e., straight line hand trajectories,
bell-shaped velocity profiles, Fitts law). Results for the two-
link planar chain are first presented, followed by results for a
seven-DOF spatial arm.

4.1. Two-link planar open chain

For the two-link planar chain, we follow the experimental
procedure described in Flash and Hogan (1985): referring to
figure 5, we consider the five movements T2 → T5, T5 → T3,
T3 → T1, T1 → T4, and T4 → T5. The results of human
experiments are also presented in Flash and Hogan (1985)
and reproduced in the left part of figure 6. To compare
these with the hand paths generated by our feedback control
law, like (Harris and Wolpert 1998) we also introduce a
post-movement settling time phase—for our experiments the
movement duration is set to 0.8 s, while the post-movement
settling time was set to about 0.3 s, with a simple finite-
time control law applied during the post-movement phase that
results in the following error dynamics:

ė = a(1 − (e − b)2), (57)

(a)

(b)

Figure 11. A frame-by-frame comparison of motions generated by our optimal feedback control law with human motion capture data: The
pink arm represents the human arm, the purple arm represents the seven-DOF robot arm. The path traced by the robot end-effector is
indicated in red. (a) Motion 1. (b) Motion 2.
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(a) (b)

Figure 12. End-effector trajectory comparison of motions generated by our feedback control law (red line) with human motion capture data
(blue line). (a) Motion 1. (b) Motion 2.

where a and b are chosen to smoothly interpolate the
trajectories during the transition of the controller, and
respectively determined from the acceleration and velocity
at the final time. This controller is designed to drive the error
to zero while following the tangent hyperbolic function, i.e.,
e = tanh(a(t − t f )) + b. By setting ė to u and e to q̇, the
joint velocity goes to zero smoothly and in finite time. Since
dq̇
dt = u, the corresponding state equations assume the form

dq̇
dt

= u = a(1 − (q̇ − b)2). (58)

Note that other finite-time controllers can be used, e.g., Haimo
(1986).

Figure 7 shows the solution of equation (20) for movement
T3 → T1. Gain trajectories of other movements are similar in
shape and we see that the gains are bounded and well-behaved.

Figure 8 depicts in more detail the optimal hand paths
(figures in top row) and corresponding tangential speed profiles
(figures in bottom row) for each of the three cases. Observe
that these hand paths are linear like those of human trials, and
the tangential velocity profiles are also bell-shaped as desired.

Figure 9 illustrates the extent to which our optimal
trajectories satisfy Fitts Law, which was discussed earlier in
section 1 and captured by equation (1). In our simulation, W is
defined to be the error between the target and final position, and
A the distance from the initial to the target position. The arm
performs the same motion but subject to different movement
times, and the positioning error at the final time is recorded.
As predicted by equation (1), a linear relationship can also be
found between task difficulty and movement time.

4.2. Seven-DOF spatial open chain

We now present results obtained with a seven-DOF robot arm
(figure 10) with a kinematic structure and dimensions similar to
that of the human arm. Trajectories generated by our feedback
control law are compared with human arm motions obtained
from motion capture data2. The initial and final postures for the
robot arm, and also the movement duration, are set to match
the motion capture data.

A frame-by-frame comparison of the generated and
captured motions are shown in figure 11 for two representative
arm reaching motions. The pink arm represents the captured
human arm motion, while the purple arm represents the robot
arm motion. We also compare the trajectories of the shoulder
and elbow joint values (q1, q2, q3, q4) of the motion generated
by our controller with the motion capture data in figure 13 (the
inverse kinematics for the human subject is solved to obtain the
measured joint trajectories). The close similarity between the
two arm motions is immediately evident. Moreover, the path
traced by the robot end-effector (indicated in red) is close to the
path traced by the human hand (indicated in blue) as shown in
figure 12. The tangential speed profiles (figure 14(a)) are also
bell-shaped. The graph showing adherence to Fitts Law (i.e.,
the inherent trade-off between move duration and accuracy) is
shown in figure 14(b); as desired, movement duration times
increase proportionally to greater accuracy requirements.

2 Courtesy Sensory-Motor Intelligence Laboratory, University of Texas at
Arlington.
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Figure 13. Joint trajectory comparison of motions generated by our feedback control law (dashed line) with human motion capture data
(solid line). (a) Motion 1. (b) Motion 2.
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Figure 14. Features of robot arm trajectories generated by our optimal feedback control law. (a) Tangential speed profile. (b) Movement
duration versus accuracy

5. Conclusion

In this paper we have proposed a stochastic optimal feedback
control law for generating natural robot arm motions. Our
approach is inspired by the minimum variance principle

of Harris and Wolpert (1998) and the optimal feedback
control principles put forth by Todorov and Jordan (2002)
for explaining human movements. A crucial difference in our
approach is that, by minimizing the endpoint variance in joint
space rather than Cartesian hand space as done in Harris and
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Wolpert (1998), not only are the resulting motions very similar
to those of human arm movements, but the feedback control
law generating the motions can be easily obtained in analytic
form, by backward integration of a set of ordinary differential
equations. In contrast to previous approaches, we show that
it is enough to consider only the second-order kinematics—
the dynamics are not included in the state equations—and
that exact solutions to the nonlinear problem can be obtained
rather easily; no linear–quadratic approximations are made at
any stage of our algorithm, for example. The only parameters
to be determined a priori are the variance scale factors; for
both the two-DOF planar arm and the seven-DOF spatial arm,
we offer a reasonably simple and intuitive method of setting
these values based on experimentally obtained data.

Experiments have been conducted with a two-link planar
chain and a spatial seven-DOF robot arm, whose kinematic
structure and dimensions are similar to those of a human
arm. Our results verify that the trajectories generated by our
feedback control law closely resemble human arm motions,
and appear to reasonably capture the essential features of
human arm movements (nearly straight-line hand trajectories,
bell-shaped velocity profiles, satisfaction of Fitts Law).
Because the optimal feedback gains can be pre-computed
offline, and nearly in real-time if necessary, our method offers
a fast and convenient way of generating natural robot arm
trajectories directly via a feedback control law.

Although it is not our intent to make any claims
regarding the motor control mechanisms by which humans
generate arm movements, our results nevertheless reinforce
certain principles and also imply other possible explanations.
First, our results to some extent reaffirm the validity of
the minimum variance principle (Harris and Wolpert 1998)
and the framework of stochastic optimal feedback control
as the underlying mechanism for human motor coordination
(Todorov and Jordan 2002), (Diedrichsen et al 2010). It may
even offer a way to reconcile motor control theories based
on the equilibrium point hypothesis (which, loosely speaking,
rely on potential field-based feedback laws; see (Gomi and
Kawato 1996) for a critique of some of its flaws) with optimal
control principles like the minimum variance principle.

One departure from the minimum variance principle as
stated in its original form is that motion generation may take
place in internal (joint space) coordinates rather than external
(task, or hand in the case of arms) coordinates. One common
theory of voluntary human arm movements suggests that a
high-level controller generates an optimal trajectory in hand
space, and that a low-level controller then generates the joint
trajectories required to track the given hand trajectory. It has
been pointed out that such a dichotomy between high- and low-
level control is unnatural, since it would imply, e.g., that the
internal mechanical properties of the arm are not considered
when generating the desired task space trajectory (Uno et al
1989); rather, any optimization is undertaken in internal (joint
space) coordinates. Todorov (2004) also points out that a

number of task coordinate-based optimality principles for
explaining voluntary human movements (Flash and Hogan
1985, Meyer et al 1988, Harris and Wolpert 1998) do not
take into account how the low-level controller operates. Other
works have also made the similar argument that human motion
optimization in joint space is more natural and effective (Kim
et al 2006).

A second point of departure from Harris and Wolpert
(1998) is that, at least for the case of simple arm reaching
movements without any external loads, it is sufficient to only
consider the second-order kinematics (that is, up to joint
accelerations); internal models of the dynamics may not be
necessary. Clearly further experimental verification of some
of these ideas is necessary.
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