
Robotica page 1 of 18. C© Cambridge University Press 2019
doi:10.1017/S0263574719000237

Robust Bipedal Locomotion Based
on a Hierarchical Control Structure
Jianwen Luo†‡ , Yao Su¶, Lecheng Ruan¶, Ye Zhao§,
Donghyun Kim‡‡, Luis Sentis‡‡‡ and Chenglong Fu‡∗

†Department of Mechanical and Energy Engineering, Southern University of Science and
Technology, Shenzhen, China. E-mail: luojw@sustc.edu.cn
‡Department of Computer Science, Stanford University, Stanford, CA, USA
¶Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA,
USA. E-mails: yaosu@g.ucla.edu, ruanlecheng@ucla.edu
§Woodruff School of Mechanical Engineering, Georgia Institute of Technology.
E-mail: ye.zhao@me.gatech.edu
‡‡Mechanical Engineering Department, Massachusetts Institute of Technology, MA, USA.
E-mail: robot.dhkim@gmail.com
‡‡‡Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin,
Austin, TX, USA. E-mail: lsentis@austin.utexas.edu

(Accepted January 29, 2019)

SUMMARY
To improve biped locomotion’s robustness to internal and external disturbances, this study proposes
a hierarchical structure with three control levels. At the high level, a foothold sequence is generated
so that the Center of Mass (CoM) trajectory tracks a planned path. The planning procedure is sim-
plified by selecting the midpoint between two consecutive Center of Pressure (CoP) points as the
feature point. At the middle level, a novel robust hybrid controller is devised to drive perturbed sys-
tem states back to the nominal trajectory within finite cycles without chattering. The novelty lies in
that the hybrid controller is not subject to linear CoM dynamic constraints. The hybrid controller con-
sists of two sub-controllers: an oscillation controller and a smoothing controller. For the oscillation
controller, the desired CoM height is specified as a sine-shaped function, avoiding a new attractive
limit cycle. However, this controller results in the inevitable chattering because of discontinuities.
A smoothing controller provides continuous properties and thus can inhibit the chattering problem,
but has a smaller region of attraction compared with the oscillation controller. A hybrid controller
merges the two controllers for a smooth transition. At the low level, the desired CoM motion is
defined as tasks and embedded in a whole body operational space (WBOS) controller to compute
the joint torques analytically. The novelty of the low-level controller lies in that within the WBOS
framework, CoM motion is not subject to fixed CoM dynamics and thus can be generalized.

KEYWORDS: Robust locomotion; Generic point mass model; Whole body control; Operational
space.

1. Introduction
Biped robots are morphologically similar to humans promising to adapt the former to everyday
human environments. In those environments, bipeds need to effectively plan a feasible path to their
target locations. To realize the locomotion control process, it is useful for the control architecture to
be organized hierarchically where a high-level controller is subject to constraints determined from a
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2 Robust bipedal locomotion based on a hierarchical control structure

low-level process closer to the physical layer.1, 2 As such, our study proposes a hierarchical control
architecture to realize practical bipedal locomotion, the advantages of which lie in the following:
(1) at the high level, a planning algorithm achieves longer time horizon planning extracting features
for the path planning process; (2) at the middle level, a simplified Center of Mass (CoM) dynamic
model of the locomotion process is used to analyze and synthesize walking controllers; and (3) at the
low level, a whole body operational space (WBOS) controller computes joint torques to achieve the
planned dynamic path.

At the high level, a sequence of feasible footholds is generated through path planning. The path
planning considers the environment and the biped’s dynamic constraints. Broadly speaking, there
exist two families of approaches for footstep planning: discrete search and continuous optimization.
Discrete search approaches have typically relied on generating a pre-computed action set; either
represented as a set of possible displacements from one footstep to the next or a set of possible
footholds in the environment. Actions are connected together to form a tree of possible footstep plans,
which can be explored using existing discrete search methods like A∗ or RRT. Action set approaches
using pre-computed step displacements have been used in refs. [3–8]. However, applying A∗ or other
informed search methods to our problem would be complicated due to the difficulty of defining a
good heuristic for partial footstep planning, that is, we cannot generally know how many additional
footsteps a partial plan will need in order to reach the goal without actually searching for those steps.9

At the mid level, a robust tracking controller is used to make the robot’s CoM track, the planned
path given by the high-level planner. A fundamental problem is motion stability. With relatively
large disturbances, the robot’s limited sized supporting feet is insufficient for recovery, thus a new
foot placement is required for stability. If we assume deterministic models, tools such as fixed-points,
limit cycles, or controllability analysis can be used for locomotion synthesis. However, when there
exist disturbances, such as model inaccuracies or unpredicted variations in terrain, tools from robust
verification become useful to characterize the stability of the locomotion process. Robust stability
analysis takes two interesting forms: worst-case scenario and stochastic analysis. To the best of our
knowledge, worst-case analysis has received little attention to date in legged locomotion; however,
approaches based on Lyapunov stability10–13 can be adopted using the notion of a common Lyapunov
function.14 One challenge here is that nominal solutions – for example, the exact shape of the nominal
limit cycle – are often parameter-dependent, that is, the system might still be stable with different
parameters, but to a slightly different limit cycle.

At the low level, WBC models biped robots as rigid body dynamic systems with a floating base and
physical constraints.15 The robot is controlled to accomplish multiple tasks using operational space
tasks through torque control commands. Robot contacts are modeled as constraints in an optimiza-
tion problem16, 17 or via projection-based techniques.18, 19 An alternative way to WBC is employing
quadratic programming,20–25 which not only allows for inequality constraints to be represented but
also endures slower computations. At the middle level, various simplified CoM dynamic models have
been proposed such as the Linear Inverted Pendulum Model (LIPM),26–29 for which the CoM height
is constant and the CoM horizontal dynamics are linear. Another popular model is the spring-loaded
inverted pendulum (SLIP).30–33 SLIP captures compliance by using an elastic element within the sup-
porting leg. This compliance is critical to achieve walking efficiency and contact safety. The prismatic
inverted pendulum model (PIPM) is another practical point mass model which has been successfully
implemented in a simulated three-dimensional point-foot biped robot.34, 35 PIPM considers the
CoM’s height variance and uses it to plan the robot’s CoM motion in the horizontal plane.

Overall, our contributions in this paper are as follows: (1) At the high level, a midpoint-based
method is proposed for locomotion path planning. Different from previous planning methods, mid-
points between consecutive Center of Pressures (CoPs) are selected as feature points for generating
a feasible and optimal CoM trajectory to track the path via A∗ search. An optimization-based method
is used to search an optimal sequence of footholds for turning at the intersection of consequent seg-
mented lines planned by the A∗ algorithm. (2) At the middle level, we propose and compare two
novel robust hybrid trajectory controllers, which can bring a disturbed state back to its nominal tra-
jectory on an extended phase space. Our hybrid controller newly combines an oscillation controller
with a smoothing controller for effective performance. The proposed oscillation controller delivers
good robust performance on CoM convergence but suffers from chattering. In contrast, the proposed
smoothing controller has a smaller region of attraction, but suffers no chattering. Logically, the hybrid
controller combines simultaneously the oscillation controller and the smoothing controller to achieve
larger regions of attraction while avoiding chattering. (3) At the low level, a foot placement planner
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Robust bipedal locomotion based on a hierarchical control structure 3

Fig. 1. Three-dimensional passive-foot biped robot. The left figure shows the robot coordinates and the right
figure shows a clear linkage and joint kinematic view of the robot.

Fig. 2. Overall hierarchical control architecture for biped locomotion.

that is not strictly subject to a predefined point mass model is proposed and embedded in the WBOS
framework. The CoM motion and the body posture are formulated as tasks in the WBOS framework.
All tasks are glued together without task priority. Since the dynamics switch based on contact events,
it is not required to specify a fixed swing time. This flexibility offers adaptability to uneven terrains.

The paper is organized as follows: Section 2 overviews the control structure of the biped loco-
motion process. Section 3 presents the path planning strategy. Section 4 focuses on analysis of the
simplified CoM dynamics and the robust trajectory controller. The WBOS framework and the foot
placement planner are discussed in Section 5. Conclusions are presented in Section 6.

2. Hierarchical Control Structure
Our simulated biped robot has six actuated DoFs, including one pitch DoF on each knee, one pitch
DoF on each hip and one roll DoF on each hip. There is one passive pitch DoF on each ankle, which
does not provide active ankle torque. Therefore, the simulated model represents a point-foot biped
robot. The passive-foot provides yaw vertical friction torque with respect to the ground surface to
counteract yaw momentum disturbances. The DoFs and coordinates of the biped robot are as shown
in Fig. 1.

The hierarchical structure of the control framework is depicted in Fig. 2. At the high level, the
A∗ algorithm is used to plan a path from the starting location to the destination in a known 2D map.
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4 Robust bipedal locomotion based on a hierarchical control structure

The shortest feasible path that connects the starting point and destination is generated as a sequence
of segmented lines. On each turning point, an arc is incorporated to smooth the transition path.
Midpoints between two consecutive CoPs are selected as feature points. An optimization process is
used to find the optimal sequence of midpoints and CoPs such that the CoM trajectory generated
based on a model predictive controller (MPC) can track the planned path. MPC forms a closed loop
which provides realtime converge of the CoM dynamics. However, robustness of MPC is weak to
large disturbances. At the middle level, where MPC fails under larger disturbances, a hybrid con-
troller guarantees the trajectory to be robust in the sense of N-cycle stability. The hybrid controller
combines two sub-controllers: an oscillation controller and a smoothing controller. The oscillation
controller attempts to drag the CoM state back to the nominal manifold in the extended phase space.
The smoothing controller attempts to eliminate the chattering problem. At the low level, The CoM
motion planner along with the foot placement planner are broken down into tasks and plugged into
the WBOS framework to compute joint torques.

3. Path Planning
In this section, a path planing method based on MPC and A∗ is discussed. MPC is incorporated to
provide closed loop control of the CoM states with respect to a desire CoP. A∗ generates an optimal
path from a starting point to the destination. The path consists of segmented lines enhanced with an
optimal sequence of footholds at the turning points.

3.1. CoM trajectory based on MPC
There is extensive work on biped locomotion via MPC.36, 37 For our method, LIPM dynamics are
shown below: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
˙̂xk+1 =

⎡
⎢⎣

1 T T2/2

0 1 T

0 0 1

⎤
⎥⎦ x̂k +

⎡
⎢⎣

T3/6

T2/2

T

⎤
⎥⎦ uk

px,k = [1 0 − zc/g]x̂k

(1)

where uk = ...
x k and x̂k = [xk, ẋk, ẍk]T , xk is the discretized position of CoM at kth sample time step.

px,k is the CoP position planned prior for kth sample time step.
Given a sequence of reference CoPs Pref

x,k+1 = [
pref

x,k+1, pref
x,k+2, . . . , pref

x,k+N

]T
and the correspond-

ing input is Uk = [...x k,
...
x k+1, . . . ,

...
x k+N]T , through N steps’ iteration from Eq. (1), an augmentation

equation is derived as shown in Eq. (2):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Px,k+1 = Mxx̂k + MuUk

Mx =

⎡
⎢⎢⎣

1 T T2/2 − zc/g
...

...
...

1 NT N2T2/2 − zc/g

⎤
⎥⎥⎦

N×3

Mu =

⎡
⎢⎢⎣

T3/6 − Tzc/g 0 0
...

. . .
...

(1 + 3N + 3N2)T3/6 − Tzc/g . . . T3/6 − Tzc/g

⎤
⎥⎥⎦

N×N

(2)

where Px,k+1 = [px,k+1, . . . , px,k+N]T .
The length of Px,k+1 is N, which also corresponds to the preview horizon. Eq. (2) can be formulated

as a QP problem where the objective function is defined as follows:

min
Uk

= 1

2
Q
(
Px,i+1 − Pref

x,i+1

)2 + 1

2
RU2

k (3)
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Robust bipedal locomotion based on a hierarchical control structure 5
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Fig. 3. This figure depicts the planned CoM trajectory based on the MPC process. The left and right figures
show the horizontal and lateral trajectories of the robot’s CoM, respectively.

where R and Q are weights shaping the tracking error and minimum effort, respectively. According
to ref. [38] , the optimal solution with respect to the jerk takes the form below:

...
x k = −eT

((
MT

u Mu + R

Q
I
)−1

MT
u

(
Mxx̂k − Pref

x,k+1

))
(4)

where e = [1, 0, . . . , 0]T
1×N and I is the identity matrix of order N. The equation above provides an

analytic optimal solution for the jerk,
...
x k, which also represents the input to the state Eq. (1) for the

kth sampling time step. The CoM and CoP trajectories in the sagittal plane and frontal plane are
shown in Fig. 3.

3.2. Optimal footholds planning for turning
We consider here a map of an indoor environment. We perform A∗ search to generate the shortest
feasible path from a starting location to the goal location in the map. Constraints in the environ-
ment are labeled as squares. The map and the path planned using A∗ are shown in Fig. 4(a). Due to
CoM dynamic constraints , the CoM evolves along a wave-shaped trajectory which is subject to the
dynamics defined by Eq. (1). Our study relies on a feature point at the midpoint of stepping trajecto-
ries taken as the midpoint between the previous and the current CoPs. We define the midpoint and the
corresponding midpoint sequence for the path planned by A∗ as CoP[i] and Mid[i], i ∈ N. Therefore:

Mid[i] = CoP[i] + CoP[i + 1]
2

(5)

A CoM trajectory generator that can track the path planned by A∗ is devised based on these mid-
points. The path is designed to maneuver in the map of Fig. 4(a). A transition planner at each turning
point is used to generate a trajectory along an arc with a certain radius. As shown in Fig. 4(b), the
length of the segmented lines AiBi, BiCi, Ai+1Bi+1, Bi+1Ci+1, Ai+2Bi+2, and Bi+2Ci+2 is designed
given a fixed constant. From this, the arc radius can be computed. Along each straight segment, a
constant step length is defined and a sequence of midpoints is generated along with the sequence of
CoPs (footholds). Before the CoM approaches the next turning point, a reference arc is generated. A
sequence of midpoints that can track the arc is found so that the CoM trajectory can turn smoothly
along the arcs. A direction vector w and CoP vector c are defined to guide the walking trajectory. w
is defined as the vector pointing from the previous midpoint to the current midpoint. c is defined as
the vector pointing from the previous CoP to the current CoP. For the turning foothold sequence, we
formulate an optimization problem that minimizes the angle between w and c:

min θ s.t.

⎧⎪⎨
⎪⎩

n = N

w0 = Mid[istart] − Mid[istart − 1]
c0 = CoP[istart] − CoP[istart − 1]

(6)
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6 Robust bipedal locomotion based on a hierarchical control structure

Fig. 4. The map in (a) shows the map scanned from an indoor environment. The path planned uses the A∗
algorithm from a given starting point to a goal point. Constraints are labeled in the map. (b) shows that midpoints
are used as features to plan the sequence of CoPs and thus generate the CoM trajectory based on MPC. The red
line is the trajectory of the CoM and the black curve is the path planned by A∗ in (a).

where θ = arcsin(< w, c > /||w|| · ||c)||). < w, c > is the inner product of w and c. w = wn and
c = cn. N is the specified step number for turning.

4. Dynamic Control of a Robot’s CoM
In this section, a point mass model and a nonlinear system are considered. A manifold and Lyapunov
function are also defined. Results based on numeric computation for such system are demonstrated.
Our study proposes two sliding mode controllers. One drives the disturbed states to converge quickly
to a nominal trajectory. The other one guarantees that the disturbed states converge to the nominal
trajectory without chattering. A hybrid controller combines the two controllers to realize a robust
policy.

4.1. Point mass model with angular momentum
Simplified point mass models, such as IP, SLIP, LIPM, and PIPM, are all subject to the following
CoM dynamics:

(rCoP − rCoM) × fGRF = −τCoM (7)

where τCoM can be considered as a disturbance on the CoM’s moments. Generally speaking, if the
angular momentum is considered, we can use the centroidal moment pivot (CMP) criteria, from
which the ground reaction force (GRF) lies along the line between the CMP and the CoM. Usually
angular momentum is quite small and can be considered as a uncertainty or disturbance. Therefore,
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Robust bipedal locomotion based on a hierarchical control structure 7

if we ignore the angular momentum of the biped robot or eliminate the disturbance term, Eq. (7) can
be written as Eq. (8):

(rCoP − rCoM) × fGRF = 0 (8)

where the position of the CoM, rCoM, and the position of supporting foot’s CoP, rCoP, are (x, y, z)T

and (xCoP, yCoP, zCoP)
T respectively. fGRF is the GRF.

When there is no external forces, the excepted GRF and gravity force, fGRF, are given by Eq. (9):

fGRF =
⎡
⎣ mẍ

mÿ

mz̈ + mg

⎤
⎦ (9)

Combining Eqs. (8) and (9) yields the following equation:⎡
⎣ 0 −mz̈ − mg mÿ

mz̈ + mg 0 −mẍ

−mÿ mẍ 0

⎤
⎦
⎡
⎣x − xCoP

y − yCoP

z − zCoP

⎤
⎦= 0 (10)

From the first two rows of the above equation, we get the following:

ẍ = z̈ + g

z
(x − xCoP) (11)

ÿ = z̈ + g

z
(y − yCoP) (12)

Let λ = λ( z̈, z), then we have ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ = λ(z̈, z)(x − xCoP)

ÿ = λ(z̈, z)(y − yCoP)

λ(z̈, z) = z̈ + g

z

(13)

4.2. Linearized point mass model template
We use LIPM as a template model. If λ is constant, the dynamics of Eq. (13) is linearized. Note that
fGRFz = mz̈ + mg is a unilateral ground force, therefore, λ should always be greater than zero, that is:{

z̈ + g ≥ 0

z > 0
(14)

The analytical solution in the lateral plane is

y(t) = (y(0) − yCoP) cosh
(√

λt
)+ ẏ(0)√

λ
sinh

(√
λt
)+ yCoP (15)

The derivative of y(t) is

ẏ(t) = √
λ(y(0) − yCoP) sinh

(√
λt
)+ ẏ(0) cosh

(√
λt
)

(16)

Note that cosh2
(√

λt
)− sinh2

(√
λt
)= 1 and combining Eqs. (15) and (16), we get:

(y − yCoP)
2 − ẏ2

λ
= (y0 − yCoP)

2 − ẏ2
0

λ
(17)

For convenience, y(t) and ẏ(t) are replaced by y and ẏ, respectively, y(0) and ẏ(0) are replaced by
y0 and ẏ0, respectively.
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8 Robust bipedal locomotion based on a hierarchical control structure

4.3. Robust hybrid controller design
In this subsection, a hybrid controller consisting of two sub-controllers is proposed. One controller
is dubbed the oscillation controller, which can effectively drag the disturbed state back to the nomi-
nal trajectory. The second controller is dubbed the smoothing controller, which prevents chattering.
These two sub-controllers rely on the sliding mode method.

4.3.1. Manifold analysis. When z̈ = 0 and z is constant, λ = λ0, and the trajectory (y(t), ẏ(t)) will
evolve along a hyperbolic manifold. Given yCoP, we define the manifold s as follows in Eq. (18):

s(y, ẏ, λ) = (y − yCoP)
2 − ẏ2

λ
− (y0 − yCoP)

2 + ẏ2
0

λ
(18)

For any state (y, ẏ, λ) in the manifold s equals to 0. Thus, s defines the error between the current
state and the nominal manifold. Take the derivative of s(y, ẏ, λ), we get:

ṡ = 2ẏ(y − yCoP) − 2

λ
ẏÿ + λ̇

λ2
ẏ2 − λ̇

λ2
ẏ2

0 (19)

Note that ÿ = λ(y − yCoP). The equation above simplifies to:

ṡ = λ̇

λ2

(
ẏ2 − ẏ2

0

)
(20)

Define the Lyapunov function V = s2/2, then V ≥ 0 and

V̇ = sṡ = s
λ̇

λ2

(
ẏ2 − ẏ2

0

)
. (21)

If V̇ ≤ 0, V will vanish eventually. In an extended phase space defined as (y, ẏ, λ), the state will
converge to the manifold defined by Eq. (18). And V can be shown to be bounded within a maximum
tube radius s2

max/2. The CoM height should subject to the condition defined below:⎧⎪⎨
⎪⎩

z̈ + g ≥ 0
|z − zn| ≤ εmax

V̇ < 0

(22)

The manifold s defined in Eq. (18) is a function of y, ẏ, and λ. Define the space � = {(y, ẏ, λ)|y ∈
R, ẏ, λ ∈ R+}. λ depends on the CoM height dynamics. Even if the CoM height and λ are dynam-
ically changing, we want the state ξ = (y, ẏ, λ) ∈ � to converge to the nominal manifold. Figure 5
demonstrates the subset of the manifold when one variable is ξ is fixed.

4.3.2. Oscillation controller. We propose an oscillation controller such that the desired trajectory of
the CoM follows a sinusoidal function:

z = A sin(ωt + φ) + zn (23)

where zn is a nominal height of the CoM. The velocity and acceleration of z are:{
ż = Aω cos(ωt + φ)

z̈ = −Aω2 sin(ωt + φ)
(24)

Note that z̈ = −ω2(z − zn). According to Eq. (13), we get:⎧⎪⎪⎨
⎪⎪⎩

λ = g − Aω2 sin(ωt + φ)

A sin(ωt + φ) + zn

λ̇ = −ż
g + ω2zn

z2

(25)
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Robust bipedal locomotion based on a hierarchical control structure 9

Fig. 5. Subspaces of manifold when y, ẏ, and λ are fixed, respectively. The yellow line corresponds to the
nominal manifold.

Plug the equations above into Eq. (20), we get the derivative of the manifold in terms of the oscillation
controller:

ṡ = −ż
(

ẏ2 − ẏ2
0

)
(g + ω2zn)

z2λ2
(26)

According to Eq. 21, V̇ = ṡs. Then V̇ becomes:

V̇ = −sż
(

ẏ2 − ẏ2
0

)
(g + ω2zn)

z2λ2
(27)

Plug ż = Aω cos(ωt + φ) in the above equation, we get:

V̇ = s
Aω cos(ωt + φ)

(
ẏ2

0 − ẏ2
)
(g + ω2zn)

z2λ2
(28)

Let V̇ ≤ 0, considering that ẏ2 < ẏ2
0, ω > 0, we get:

s A cos(ωt + φ) ≤ −|εosc| (29)

where εosc is a bounded value to be specified. As long as the condition defined in the above equation
is satisfied, there exists a finite positive value ρ such that the inequality below can be guaranteed:

V̇ ≤ −|ρ| (30)
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Fig. 6. Sampled disturbed states converging to a nominal trajectory. (a) shows some disturbed states deviating
from the nominal trajectory evolving back to the nominal trajectory under the effect of the oscillation controller.
(b) shows that when the states converge, there is chattering effects along the trajectory.

Therefore, Eq. 29 represents the condition by which we can guarantee that s converges to the nominal
manifold. When the disturbed state is on one side of the manifold, the distanced defined in Eq. 18
will be non-zero. During numerical computation, the sign of the manifold will stay unchanged and
the equalities below hold: ⎧⎪⎪⎨

⎪⎪⎩
z = sign(s)A sin(ωt + φ) + zn

ż = sign(s)Aω cos(ωt + φ)

z̈ = −sign(s)Aω2 sin(ωt + φ)

(31)

where A and φ are constant terms. Subject to the first constraint of Eq. 22, we get:

g ≥ max{Aω2 sin(ωt + φ)} = |A|ω2 (32)

The algorithm for the oscillation controller is shown in Algorithm 1. T is the period for the LIPM
model. ξ is a factor that determines the maximum period time allowed in the controller. ε is the
margin used to jump from the left half period to the right half period. N is the ratio between the
control period and the computing period. t is the control period. Fig. 6 shows the states converge
under Algorithm 1 and the chattering effects.

4.3.3. Smoothing controller. The oscillation controller can drag the disturbed states back to the
nominal trajectory. However, due to the effect of the sign function, chattering around the nomi-
nal trajectory is inevitable. To smooth the trajectory, a smoothing controller is proposed, which
can guarantee asymptotic convergence. This controller defines a new manifold σ as shown
in Eq. (33):

σ = α1s2 + α2(λ − λn)
2 (33)

where α1 and α2 are nonnegative coefficients, and hence σ is nonnegative. If s converges to zero, the
states of the CoM will return to the nominal trajectory. If λ − λn converges to zero, the CoM height
will be stabilized within a small region around the desired height. The derivative of σ is

σ̇ = 2α1sṡ + 2α2(λ − λn)λ̇ (34)

Define a Lyapunov function Vσ = σ 2/2. It’s derivative is

V̇σ = σ σ̇ = σ
[
2α1s

λ̇

λ2

(
ẏ2 − ẏ2

0

)+ 2α2(λ − λn)λ̇
]

(35)
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Algorithm 1 Oscillation Controller
while tk ≤ ξT and ẏk ≥ −y0 + ε and ẏk ≤ y0 do

i ⇐ 0
while i ≤ N do

sk,i ⇐ (yk,i − yCoP)2 − ẏ2
k,i

λa,k
− (y0 − yCoP)2 + ẏ2

0
λa,k

ÿk,i ⇐ λa,k(yk,i − yCoP)

ẏk,i+1 ⇐ ẏk,i + ÿk,idt/N
yk,i+1 ⇐ yk,i + ẏk,idt/N
i ⇐ i + 1

end while
zk+1 ⇐ sign(sk,N)A sin(ωtk + φ) + zn

żk+1 ⇐ sign(sk,N)Aω cos(ωtk + φ)

z̈k+1 ⇐ −sign(sk,N)Aω2 sin(ωtk + φ)

λa,k+1 ⇐ (z̈k+1 + g)/zk+1

tk ⇐ tk + dt
k ⇐ k + 1

end while
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Fig. 7. The disturbed state converges asymptotically to the nominal trajectory when using the smoothing
controller but can not reach the nominal trajectory. Comparatively, the oscillation controller suffers from
chattering.

Let V̇σ < 0. We get:

σ λ̇

[
α1

s
(

ẏ2 − ẏ2
0

)
λ2

+ α2(λ − λn)

]
< 0 (36)

λ̇ = −β tanh

(
α1

s
(

ẏ2 − ẏ2
0

)
λ2

+ α2(λ − λn)

)
(37)

Looking at Fig. 7, since in the manifold defined by the smoothing controller, s and λ are designed to
return to zero and to λn respectively, they could end up in another equilibrium orbit, meaning that λ

could converge to a different λ
′
n 
= λn and the disturbed state will continue in the trajectory. Compared

to the oscillation controller, the smoothing controller avoids the chattering problem but fails to assure
the convergence to the nominal trajectory. When the disturbed states are far away from the nominal
trajectory, the smoothing controller is not capable of pulling them back. Figure 8 shows σ , for which
the state evolves along the nominal trajectory of Fig. 7(a). σ is almost zero, which guarantees λ to
stay close to λn.
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12 Robust bipedal locomotion based on a hierarchical control structure

Fig. 8. σ changes very little in the smoothing controller, which implies that σ is almost zero, s is also almost
zero, and λ tends to λn.

The computational algorithm is shown in Algorithm 2. T is the period for the LIPM model. ξ is a
factor defining the maximum period allowed for the controller. ε is the margin used to jump from the
left half period to the right half period. N is the ratio between the control period and the computing
period. t is the control period. β α1 α2 are shown in Eqs. (36) and (37).

Algorithm 2 Smoothing Controller
while tk ≤ ξT and ẏk ≥ −y0 + ε and ẏk ≤ y0 do

i ⇐ 0
while i ≤ N do

sk,i ⇐ (yk,i − yCoP)2 − ẏ2
k,i

λb,k
− (y0 − yCoP)2 + ẏ2

0
λb,k

ÿk,i ⇐ λb,k(yk,i − yCoP)

ẏk,i+1 ⇐ ẏk,i + ÿk,idt/N
yk,i+1 ⇐ yk,i + ẏk,idt/N
i ⇐ i + 1

end while

λ̇b,k ⇐ −β tanh
(
α1

sk,N

(
ẏ2

k,N−ẏ2
0

)
λ2

b,k
+ α2(λb,k − λn)

)
λb,k+1 ⇐ λb,k + λ̇b,kdt
zk+1 ⇐ zk + żkdt
żk+1 ⇐ żk + z̈kdt
z̈k+1 ⇐ zk+1λb,k+1 − g
tk+1 ⇐ tk + dt
k ⇐ k + 1

end while

4.3.4. Hybrid controller. The smoothing controller could avoid the chattering problem. However, it
can only drag neighboring states back to the nominal trajectory while the oscillation controller, in
comparison, is able to steer disturbed states far from the nominal trajectory. To inherit the merits
of these two controllers, a hybrid controller is proposed. Intuitively, the oscillation controller and
the smoothing controller are merged via weights. Through adjusting the weights, the dominance of
each controller will gradually transition from one to the other. The weighted controller is defined as
follows:

λ = ηλa + (1 − η)λb (38)

where λa and λb are given by the oscillation and the smoothing controllers respectively and shown
in Eq. (39). The coefficient η is the weight used to adjust the transition between the two controllers.
In this study η is set to have a linear relationship with the distance between the disturbed state and
the nominal manifold, η ∈ [0, 1]. When the disturbed state is far away from the nominal trajectory,
a larger η makes the oscillation controller dominate, speeding convergence. When the disturbed
state comes near the nominal trajectory, η is tuned to be smaller so that the smoothing controller
dominates. The combined effect stabilizes the system and avoids the chattering problem:⎧⎪⎨

⎪⎩
λa = −ż g+ω2zn

z2

λb = ∫ t
t0

−β tanh

(
α1

s
(

ẏ2−ẏ2
0

)
λ2 + α2(λ − λn)

)
dt

(39)
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Robust bipedal locomotion based on a hierarchical control structure 13

Fig. 9. An initial state that deviates from the nominal trajectory, asymptotically converges to the nominal
trajectory by the aid of our proposed hybrid controller. The black dotted curve is the nominal trajectory.

Fig. 10. Attraction region in the phase space. The black dotted curve is the nominal trajectory. Similar colors
are used to label regions within which all the states can converge to the nominal trajectory within a number of
cycles.

We define a N−region in the phase space, for which any initial state ξ can be dragged back to a
small tube under the hybrid controller. The tube wraps around the nominal trajectory. Figure 9 shows
an example of an initial state that asymptotically converges to the nominal trajectory with the hybrid
controller. From the 4th cycle, the state basically stays on a trajectory that almost coincides with the
nominal one. Figure 10 shows the N− region decomposition. The same color mapping represents the
number of cycles to converge to the nominal trajectory.

5. WBOS Control
Operational space control is used here for biped robots, which we model as a rigid multi-body system
with a floating base and in contact with the environment.15 A foot placement planner is proposed
and stepping on unknown obstacle and push recovery are demonstrated. The WBOS framework is
characterized by

Aq̈ + NT
c (b + g) + JT

c �cJ̇cq̇ = (SNc)
Tτ (40)

where q ∈R
(n+6) are generalized coordinates of the biped robot. n is the number of actuated degrees-

of-freedom (DOFs). A is the mass inertia matrix, b is the centrifugal and Coriolis vector and, g is the
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14 Robust bipedal locomotion based on a hierarchical control structure

gravity vector. Jc is the contact jacobian (left or right foot) and �c is the kinetic energy matrix of the
contact space. The generalized force in operational space is given by

Ftask = �∗
taskutask + μ∗

task + p∗
task (41)

where Ftask is the generalized force in task space. �∗
task is the kinetic energy matrix in task space.

utask, μ∗
task, and p∗

task are the task space acceleration, centrifugal and Coriolis force, and gravity force,
respectively. utask, μ∗

task, and p∗
task are given below:⎧⎪⎪⎨
⎪⎪⎩

�∗
task = (

J∗
task�J∗T

task

)−1
,

μ∗
task = �∗

taskJ∗
task�b − �∗

taskJ̇∗
taskq̇,

p∗
task = �∗

taskJ∗
task�g

(42)

where � = (SNc)A−1(SNc)
T is the constrained projection of A−1. J∗

task = Jtask(SNc) ∈R
ntask×6. For

passive-foot biped robots with 6 DoFs, the task vector in the operational space is defined by the
combined jacobian:

Jwalking =
⎡
⎢⎣

JzCoM

Jposture

Jfoot

⎤
⎥⎦ (43)

JzCoM, Jposture, and Jfoot are the jacobians for the robot’s CoM height, posture of the torso, and foot.
The task acceleration is defined as:

uwalking = [z̈CoM, θ̈pitch, θ̈roll, ẍfoot, ÿfoot, z̈foot]T (44)

where z̈CoM, θ̈pitch, θ̈roll, ẍfoot, ÿfoot, z̈foot are the accelerations for CoM height, torso’s pitch, and roll
angles θpitch, θroll, foot position xfoot, yfoot, and zfoot.

In our task design, the CoM dynamics in the x and y directions are passive, which implies that it
is intractable to control the desired motion of the x and y tasks and embed them in the whole body
operational framework. In this study, a method is devised to plan a robust trajectory in the y and x
phase space through adjusting the z trajectory. Here are our assumptions for the analysis of our CoM
dynamic controller:
(1) The CoM angular momentum is ignored;
(2) There is no slip of the supporting foot.

The foot placement planner is designed to be:

ρ = ξ + λξ̇ (45)

where ρ ∈ � = {[xfoot, yfoot]T ∈R
2| ||rfoot − rtorso|| < l}, rfoot = [xfoot, yfoot, zfoot]T. rtorso is the origin

of the torso’s local frame. l is the maximum distance between the torso and the foot. The desired
trajectory of the foot height is planned via a sine function. Figure 11(a) depicts the swing time in
each phase when the biped robot stable step on a flat ground. The swing phase is switched based on
the contact event rather than a fixed pre-planned phase time. Figure 11(b) shows an example when
the robot steps on an unknown obstacle. The robot has no prior knowledge of the terrain. When the
right foot lands on the unexpected obstacle, the left foot is considered for the update of the new foot
placement. The simulation result shows that the robot displays robustness to the unknown terrains.
The swing time is shortened when the foot lands ahead of time due to the obstacle. This can be seen
in the first few points of Fig. 11(b).

Figure 12 demonstrates that the foot placement planner can recover from a push. The push comes
from an external impact on the right side of the torso. The impact is 2100 N and lasts for 0.002 s,
which is an impulse of 4.2 N · s. The impulse larger than 4.2 N · s generally leads to failure in push
recovery due to kinematic constraints for maximum stepping length. The total mass of the simulated
robot is around 30 kg, of which the torso, hip, thigh, and shank weigh is 15.1, 2.3, 3.5, and 1.1 kg,
respectively. In Fig. 12, the red line depicts the evolution of the CoM state after the push. After a few
foot placement adjustments, the COM state settles in a bounded region in the phase plane.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574719000237
Downloaded from https://www.cambridge.org/core. IP address: 52.231.185.82, on 01 Mar 2019 at 13:48:33, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574719000237
https://www.cambridge.org/core


Robust bipedal locomotion based on a hierarchical control structure 15

Fig. 11. The evolution of swing phase time (a) during stable stepping and (b) during stepping on unexpected
obstacle. The swing phase between left and right foots is switched based on contact events.

Fig. 12. The evolution of the position and velocity of the CoM in the y direction is shown here. The red line
shows the evolution after an impulse is exerted on the robot. The CoM state moves in the direction of the black
arrows. The blue lines are used to show when the CoM state converges back to a bounded ball.
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16 Robust bipedal locomotion based on a hierarchical control structure

6. Conclusion
In this study, a hierarchical control structure is considered to improve the robustness of bipedal
locomotion. The hierarchical structure consists of three levels. At the high level, a midpoint-based
method is proposed to generate a CoM trajectory that can track the path planned by A∗. It is shown
that the path planning method based on midpoints as feature is suitable for wave-shaped trajectories.
At the middle level, a robust hybrid controller consisting of two sub-controllers is proposed. The
simulation proves that the disturbed states in the extended phase space can be dragged back to the
nominal trajectory planned by MPC without chattering issues. At the low level, the flexibility of a
WBOS framework is put to use through designing CoM motion, and posture and foot placement
trajectories as tasks. It is demonstrated in simulation that the motion controller displays robustness
to unexpected obstacles and push disturbances. The three levels are independent with each other: the
high level generates a feasible CoM trajectory and the middle-level controller provides robustness to
the disturbances. The low level incorporates CoM motion as a task in the WBOS framework which
increases the adaptability to uneven terrains.

Overall, this study demonstrates the effectiveness of the proposed hierarchical control structure
through simulation. We are currently developing an experimental robot platform so that it can sup-
port large enough joint torque control bandwidth, accurate state estimation, and powerful actuation.38

In the meantime, this study focuses on the theoretical developments and simulation validation. The
simulation does not consider joint actuation latencies, thus assuming pure torque source in the
WBOS framework. And the state and sensor noise are also ignored. State estimation is assumed
to be accurate. In the real robot, we will encounter all of these additional difficulties
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